OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2033–2040

Fractional free space, fractional lenses, and fractional imaging systems

Uygar Sümbül and Haldun M. Ozaktas  »View Author Affiliations


JOSA A, Vol. 20, Issue 11, pp. 2033-2040 (2003)
http://dx.doi.org/10.1364/JOSAA.20.002033


View Full Text Article

Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Continuum extensions of common dual pairs of operators are presented and consolidated, based on the fractional Fourier transform. In particular, the fractional chirp multiplication, fractional chirp convolution, and fractional scaling operators are defined and expressed in terms of their common nonfractional special cases, revealing precisely how they are interpolations of their conventional counterparts. Optical realizations of these operators are possible with use of common physical components. These three operators can be interpreted as fractional lenses, fractional free space, and fractional imaging systems, respectively. Any optical system consisting of an arbitrary concatenation of sections of free space and thin lenses can be interpreted as a fractional imaging system with spherical reference surfaces. As a special case, a system departing from the classical single-lens imaging condition can be interpreted as a fractional imaging system.

© 2003 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(080.0080) Geometric optics : Geometric optics
(080.2720) Geometric optics : Mathematical methods (general)

Citation
Uygar Sümbül and Haldun M. Ozaktas, "Fractional free space, fractional lenses, and fractional imaging systems," J. Opt. Soc. Am. A 20, 2033-2040 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-11-2033


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001).
  2. D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).
  3. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).
  4. H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).
  5. S. Abe and J. T. Sheridan, “Random fractional Fourier transform: stochastic perturbations along the axis of propagation,” J. Opt. Soc. Am. A 16, 1986–1991 (1999).
  6. O. Akay and G. F. Boudreaux-Bartels, “Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform,” IEEE Signal Process. Lett. 5, 312–314 (1998).
  7. T. Alieva and M. J. Bastiaans, “Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams,” J. Opt. Soc. Am. A 17, 2319–2323 (2000).
  8. L. M. Bernardo, “Independent adjustment of the scale and the order of polychromatic fractional Fourier transforms,” Opt. Commun. 176, 61–64 (2000).
  9. H. M. Ozaktas, B. Barshan, D. Mendlovic, and H. Urey, “Space-variant filtering in fractional Fourier domains,” in Optical Computing, Institute of Physics Conference Series, B. S. Wherrett and P. Chavel, eds. (Institute of Physics, Bristol, UK, 1995), pp. 285–288.
  10. M. A. Kutay, H. Özaktaş, H. M. Ozaktas, and O. Arikan, “The fractional Fourier domain decomposition,” Signal Process. 77, 105–109 (1999).
  11. İ. Ş. Yetik, M. A. Kutay, H. Özaktaş, and H. M. Ozaktas, “Continuous and discrete fractional Fourier domain decomposition,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 93–96.
  12. İ. Ş. Yetik, H. M. Ozaktas, B. Barshan, and L. Onural, “Perspective projections in the space–frequency plane and fractional Fourier transforms,” J. Opt. Soc. Am. A 17, 2382–2390 (2000).
  13. L. Barker, C̣. Candan, T. Hakioğlu, M. A. Kutay, and H. M. Ozaktas, “The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform,” J. Phys. A 33, 2209–2222 (2000).
  14. X. Deng, Y. Li, Y. Qiu, and D. Fan, “Diffraction interpreted through fractional Fourier transforms,” Opt. Commun. 131, 241–245 (1996).
  15. D. Dragoman, M. Dragoman, and K. H. Brenner, “Experimental demonstration of a continuously variant fractional Fourier transformer,” Appl. Opt. 38, 4985–4989 (1999).
  16. J. Hua, L. Liu, and G. Li, “Performing the fractional Fourier transform by one Fresnel diffraction and one lens,” Opt. Commun. 137, 11–12 (1997).
  17. M. A. Kutay and H. M. Ozaktas, “Optimal image restoration with the fractional Fourier transform,” J. Opt. Soc. Am. A 15, 825–833 (1998).
  18. S. T. Liu, L. Yu, and B. H. Zhu, “Optical image encryption by cascaded fractional Fourier transforms with random phase filtering,” Opt. Commun. 187, 57–63 (2001).
  19. S. C. Pei and J. J. Ding, “Two-dimensional affine generalized fractional Fourier transform,” J. Opt. Soc. Am. A 17, 2319–2323 (2000).
  20. J. T. Sheridan and R. Patten, “Holographic interferometry and the fractional Fourier transformation,” Opt. Lett. 25, 448–450 (2000).
  21. R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000).
  22. Z. Zalevsky, D. Mendlovic, M. A. Kutay, H. M. Ozaktas, and J. Solomon, “Improved acoustic signals discrimination using fractional Fourier transform based phase-space representations,” Opt. Commun. 190, 95–101 (2001).
  23. Y. Zhang, B.-Z. Dong, B.-Y. Gu, and G.-Z. Yang, “Beam shaping in the fractional Fourier transform domain,” J. Opt. Soc. Am. A 15, 1114–1120 (1998).
  24. D. M. Zhao and S. M. Wang, “Effect of misalignment on optical fractional Fourier transforming systems,” Opt. Commun. 198, 281–286 (2001).
  25. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995).
  26. H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997).
  27. H. M. Ozaktas and O. Aytür, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995).
  28. O. Aytür and H. M. Ozaktas, “Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms,” Opt. Commun. 120, 166–170 (1995).
  29. A. Papoulis, Systems and Transformations with Applications in Optics (McGraw-Hill, New York, 1968).
  30. A. Lohmann, “Ein neues Dualitätsprinzip in der Optik,” Optik 11, 478–488 (1954). An English version appeared as “Duality in optics,” Optik 89, 93–97 (1992).
  31. K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, New York, 1979).
  32. R. M. Wilcox, “Exponential operators and parameter differentiation in quantum physics,” J. Math. Phys. 8, 962–982 (1967).
  33. M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1780 (1971).
  34. K. B. Wolf, “Canonical transforms. I. Complex linear transforms,” J. Math. Phys. 15, 1295–1301 (1974).
  35. R. Gilmore, “Baker–Campbell–Hausdorff formulas,” J. Math. Phys. 15, 2090–2092 (1974).
  36. A. J. Dragt and J. M. Finn, “Lie series and invariant functions for analytic symplectic maps,” J. Math. Phys. 17, 2215–2227 (1976).
  37. H. J. Butterweck, “General theory of linear, coherent, optical data-processing systems,” J. Opt. Soc. Am. 67, 60–70 (1977).
  38. J. Shamir, “Cylindrical lens systems described by operator algebra,” Appl. Opt. 18, 4195–4202 (1979).
  39. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
  40. M. Nazarathy and J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980).
  41. D. Stoler, “Operator methods in physical optics,” J. Opt. Soc. Am. 71, 334–341 (1981).
  42. M. Nazarathy and J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982).
  43. M. Nazarathy and J. Shamir, “First-order optics—operator representation for systems with loss or gain,” J. Opt. Soc. Am. 72, 1398–1408 (1982).
  44. D. Basu and K. B. Wolf, “The unitary irreducible representations of SL(2, R) in all subgroup reductions,” J. Math. Phys. 23, 189–205 (1982).
  45. M. Kauderer, “Fourier-optics approach to the symplectic group,” J. Opt. Soc. Am. A 7, 231–239 (1990).
  46. M. Kauderer, Symplectic Matrices: First Order Systems and Special Relativity (World Scientific, Singapore, 1994).
  47. R. Simon and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000).
  48. H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).
  49. It should be noted, however, that the fractional power of an operator is not unique. For instance, see Ref. 21 or Ref. 1, pp. 137–143.
  50. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977).
  51. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited