## Fractional free space, fractional lenses, and fractional imaging systems

JOSA A, Vol. 20, Issue 11, pp. 2033-2040 (2003)

http://dx.doi.org/10.1364/JOSAA.20.002033

Enhanced HTML Acrobat PDF (167 KB)

### Abstract

Continuum extensions of common dual pairs of operators are presented and consolidated, based on the fractional Fourier transform. In particular, the fractional chirp multiplication, fractional chirp convolution, and fractional scaling operators are defined and expressed in terms of their common nonfractional special cases, revealing precisely how they are interpolations of their conventional counterparts. Optical realizations of these operators are possible with use of common physical components. These three operators can be interpreted as fractional lenses, fractional free space, and fractional imaging systems, respectively. Any optical system consisting of an arbitrary concatenation of sections of free space and thin lenses can be interpreted as a fractional imaging system with spherical reference surfaces. As a special case, a system departing from the classical single-lens imaging condition can be interpreted as a fractional imaging system.

© 2003 Optical Society of America

**OCIS Codes**

(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(080.0080) Geometric optics : Geometric optics

(080.2720) Geometric optics : Mathematical methods (general)

**History**

Original Manuscript: March 18, 2003

Revised Manuscript: June 25, 2003

Manuscript Accepted: July 18, 2003

Published: November 1, 2003

**Citation**

Uygar Sümbül and Haldun M. Ozaktas, "Fractional free space, fractional lenses, and fractional imaging systems," J. Opt. Soc. Am. A **20**, 2033-2040 (2003)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-11-2033

Sort: Year | Journal | Reset

### References

- H. M. Ozaktas, Z. Zalevsky, M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001).
- D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
- H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
- H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993). [CrossRef]
- S. Abe, J. T. Sheridan, “Random fractional Fourier transform: stochastic perturbations along the axis of propagation,” J. Opt. Soc. Am. A 16, 1986–1991 (1999). [CrossRef]
- O. Akay, G. F. Boudreaux-Bartels, “Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform,” IEEE Signal Process. Lett. 5, 312–314 (1998). [CrossRef]
- T. Alieva, M. J. Bastiaans, “Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams,” J. Opt. Soc. Am. A 17, 2319–2323 (2000). [CrossRef]
- L. M. Bernardo, “Independent adjustment of the scale and the order of polychromatic fractional Fourier transforms,” Opt. Commun. 176, 61–64 (2000). [CrossRef]
- H. M. Ozaktas, B. Barshan, D. Mendlovic, H. Urey, “Space-variant filtering in fractional Fourier domains,” in Optical Computing, Institute of Physics Conference Series, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, UK, 1995), pp. 285–288.
- M. A. Kutay, H. Özaktaş, H. M. Ozaktas, O. Arıkan, “The fractional Fourier domain decomposition,” Signal Process. 77, 105–109 (1999). [CrossRef]
- İ. Ş. Yetik, M. A. Kutay, H. Özaktaş, H. M. Ozaktas, “Continuous and discrete fractional Fourier domain decomposition,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 93–96.
- İ. Ş. Yetik, H. M. Ozaktas, B. Barshan, L. Onural, “Perspective projections in the space–frequency plane and fractional Fourier transforms,” J. Opt. Soc. Am. A 17, 2382–2390 (2000). [CrossRef]
- L. Barker, C̣. Candan, T. Hakioğlu, M. A. Kutay, H. M. Ozaktas, “The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform,” J. Phys. A 33, 2209–2222 (2000). [CrossRef]
- X. Deng, Y. Li, Y. Qiu, D. Fan, “Diffraction interpreted through fractional Fourier transforms,” Opt. Commun. 131, 241–245 (1996). [CrossRef]
- D. Dragoman, M. Dragoman, K. H. Brenner, “Experimental demonstration of a continuously variant fractional Fourier transformer,” Appl. Opt. 38, 4985–4989 (1999). [CrossRef]
- J. Hua, L. Liu, G. Li, “Performing the fractional Fourier transform by one Fresnel diffraction and one lens,” Opt. Commun. 137, 11–12 (1997). [CrossRef]
- M. A. Kutay, H. M. Ozaktas, “Optimal image restoration with the fractional Fourier transform,” J. Opt. Soc. Am. A 15, 825–833 (1998). [CrossRef]
- S. T. Liu, L. Yu, B. H. Zhu, “Optical image encryption by cascaded fractional Fourier transforms with random phase filtering,” Opt. Commun. 187, 57–63 (2001). [CrossRef]
- S. C. Pei, J. J. Ding, “Two-dimensional affine generalized fractional Fourier transform,” J. Opt. Soc. Am. A 17, 2319–2323 (2000). [CrossRef]
- J. T. Sheridan, R. Patten, “Holographic interferometry and the fractional Fourier transformation,” Opt. Lett. 25, 448–450 (2000). [CrossRef]
- R. Simon, K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000). [CrossRef]
- Z. Zalevsky, D. Mendlovic, M. A. Kutay, H. M. Ozaktas, J. Solomon, “Improved acoustic signals discrimination using fractional Fourier transform based phase-space representations,” Opt. Commun. 190, 95–101 (2001). [CrossRef]
- Y. Zhang, B.-Z. Dong, B.-Y. Gu, G.-Z. Yang, “Beam shaping in the fractional Fourier transform domain,” J. Opt. Soc. Am. A 15, 1114–1120 (1998). [CrossRef]
- D. M. Zhao, S. M. Wang, “Effect of misalignment on optical fractional Fourier transforming systems,” Opt. Commun. 198, 281–286 (2001). [CrossRef]
- H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
- H. M. Ozaktas, M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997). [CrossRef]
- H. M. Ozaktas, O. Aytür, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995). [CrossRef]
- O. Aytür, H. M. Ozaktas, “Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms,” Opt. Commun. 120, 166–170 (1995). [CrossRef]
- A. Papoulis, Systems and Transformations with Applications in Optics (McGraw-Hill, New York, 1968).
- A. Lohmann, “Ein neues Dualitätsprinzip in der Optik,” Optik 11, 478–488 (1954). An English version appeared as “Duality in optics,” Optik 89, 93–97 (1992).
- K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, New York, 1979).
- R. M. Wilcox, “Exponential operators and parameter differentiation in quantum physics,” J. Math. Phys. 8, 962–982 (1967). [CrossRef]
- M. Moshinsky, C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1780 (1971). [CrossRef]
- K. B. Wolf, “Canonical transforms. I. Complex linear transforms,” J. Math. Phys. 15, 1295–1301 (1974). [CrossRef]
- R. Gilmore, “Baker–Campbell–Hausdorff formulas,” J. Math. Phys. 15, 2090–2092 (1974). [CrossRef]
- A. J. Dragt, J. M. Finn, “Lie series and invariant functions for analytic symplectic maps,” J. Math. Phys. 17, 2215–2227 (1976). [CrossRef]
- H. J. Butterweck, “General theory of linear, coherent, optical data-processing systems,” J. Opt. Soc. Am. 67, 60–70 (1977). [CrossRef]
- J. Shamir, “Cylindrical lens systems described by operator algebra,” Appl. Opt. 18, 4195–4202 (1979). [CrossRef] [PubMed]
- M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
- M. Nazarathy, J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980). [CrossRef]
- D. Stoler, “Operator methods in physical optics,” J. Opt. Soc. Am. 71, 334–341 (1981). [CrossRef]
- M. Nazarathy, J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982). [CrossRef]
- M. Nazarathy, J. Shamir, “First-order optics—operator representation for systems with loss or gain,” J. Opt. Soc. Am. 72, 1398–1408 (1982). [CrossRef]
- D. Basu, K. B. Wolf, “The unitary irreducible representations of SL(2, R) in all subgroup reductions,” J. Math. Phys. 23, 189–205 (1982). [CrossRef]
- M. Kauderer, “Fourier-optics approach to the symplectic group,” J. Opt. Soc. Am. A 7, 231–239 (1990). [CrossRef]
- M. Kauderer, Symplectic Matrices: First Order Systems and Special Relativity (World Scientific, Singapore, 1994).
- R. Simon, K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000). [CrossRef]
- H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
- It should be noted, however, that the fractional power of an operator is not unique. For instance, see Ref. 21 or Ref. 1, pp. 137–143.
- C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, New York, 1977).
- A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |

« Previous Article | Next Article »

OSA is a member of CrossRef.