## Temporal response of a random medium from speckle intensity frequency correlations

JOSA A, Vol. 20, Issue 11, pp. 2057-2070 (2003)

http://dx.doi.org/10.1364/JOSAA.20.002057

Acrobat PDF (482 KB)

### Abstract

We reconstruct the temporal response of a random medium by using speckle intensity frequency correlations. When the scattered field from a random medium is described by circular complex Gaussian statistics, we show that third-order correlations permit retrieval of the Fourier phase of the temporal response with bispectral techniques. Our experimental results for random media samples in the diffusion regime are in excellent agreement with the intensity temporal response measured directly with an ultrafast pulse laser and a streak camera. Our speckle correlation measurements also demonstrate sensitivity to inhomogeneous samples, highlighting the potential application for imaging within a scattering medium.

© 2003 Optical Society of America

**OCIS Codes**

(030.6140) Coherence and statistical optics : Speckle

(100.5070) Image processing : Phase retrieval

(290.1990) Scattering : Diffusion

(290.4210) Scattering : Multiple scattering

(290.7050) Scattering : Turbid media

**Citation**

Mark A. Webster, Kevin J. Webb, Andrew M. Weiner, Junying Xu, and Hui Cao, "Temporal response of a random medium from speckle intensity frequency correlations," J. Opt. Soc. Am. A **20**, 2057-2070 (2003)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-11-2057

Sort: Year | Journal | Reset

### References

- A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
- V. V. Tuchin, in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of Tutorial Texts in Optical Engineering, D. C. O’Shea, ed. (SPIE Press, Bellingham, Wash., 2000).
- M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
- J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).
- G. Parry, “Some effects of temporal coherence on the first order statistics of speckle,” Opt. Acta 21, 763–772 (1974).
- T. Bellini, M. A. Glaser, and N. A. Clark, “Effects of finite laser coherence in quasielastic multiple scattering,” Phys. Rev. A 44, 5215–5223 (1991).
- A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett. 58, 2043–2046 (1987).
- C. A. Thompson, K. J. Webb, and A. M. Weiner, “Diffusive media characterization using laser speckle,” Appl. Opt. 36, 3726–3734 (1997).
- C. A. Thompson, K. J. Webb, and A. M. Weiner, “Imaging in scattering media by use of laser speckle,” J. Opt. Soc. Am. A 14, 2269–2277 (1997).
- J. D. McKinney, M. A. Webster, K. J. Webb, and A. M. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett. 25, 4–6 (2000).
- J. C. Hebden and D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
- J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
- B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
- J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
- A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman, and R. P. Millane, “Three-dimensional Bayesian optical diffusion tomography with experimental data,” Opt. Lett. 27, 95–97 (2002).
- M. A. Webster, K. J. Webb, and A. M. Weiner, “Temporal response of a random medium from third-order laser speckle frequency correlations,” Phys. Rev. Lett. 88, 033901 (2002).
- A. Z. Genack and J. M. Drake, “Relationship between optical intensity, fluctuations and pulse propagation in random media,” Europhys. Lett. 11, 331–336 (1990).
- R. Hanbury Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Philos. Mag. 45, 663–682 (1954).
- H. Gamo, “Triple correlator of photoelectric fluctuations as a spectroscopic tool,” J. Appl. Phys. 34, 875–876 (1963).
- H. Gamo, “Phase determination of coherence functions by the intensity interferometer,” in Electromagnetic Theory and Antennas, Vol. 6 of International Series of Monographs on Electromagnetic Waves, E. C. Jordan, ed. (Pergamon, New York, 1963), pp. 801–810.
- A. W. Lohmann, G. Weigelt, and B. Wirnitzer, “Speckle masking in astronomy: triple correlation theory and applications,” Appl. Opt. 22, 4028–4037 (1983).
- E. I. Blount and J. R. Klauder, “Recovery of laser intensity from correlation data,” J. Appl. Phys. 40, 2874–2875 (1969).
- S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmissions through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
- S. Feng and P. A. Lee, “Mesoscopic conductors and correlations in laser speckle patterns,” Science 251, 633–639 (1991).
- J. H. Li and A. Z. Genack, “Correlation in laser speckle,” Phys. Rev. E 49, 4530–4533 (1994).
- F. Scheffold, W. Hartl, G. Maret, and E. Matijevic, “Observation of long-range correlations in temporal intensity fluctuations in light,” Phys. Rev. B 56, 10942–10952 (1997).
- J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
- I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. Theory IT-8, 194–195 (1962).
- A. Z. Genack, “Fluctuations, correlations and average transport of electromagnetic radiation in random media,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 207–311.
- A. W. Lohmann and B. Wirnitzer, “Triple correlations,” Proc. IEEE 72, 889–901 (1984).
- H. Bartelt, A. W. Lohmann, and B. Wirnitzer, “Phase and amplitude recovery from bispectra,” Appl. Opt. 23, 3121–3129 (1984).
- J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).
- R. Pnini and B. Shapiro, “Fluctuations in transmission of waves through disordered slabs,” Phys. Rev. B 39, 6986–6994 (1989).
- J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
- R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
- M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
- C. A. Haniff, “Least-squares Fourier phase estimation from the modulo 2π bispectrum phase,” J. Opt. Soc. Am. A 8, 134–140 (1991).
- C. L. Matson, “Weighted-least-squares phase reconstruction from the bispectrum,” J. Opt. Soc. Am. A 8, 1905–1913 (1991).
- J. C. Marron, P. P. Sanchez, and R. C. Sullivan, “Unwrapping algorithm for least-squares phase recovery from the modulo 2π bispectrum phase,” J. Opt. Soc. Am. A 7, 14–20 (1990).
- A. A. Scribot, “First-order probability density functions of speckle measured with a finite aperture,” Opt. Commun. 11, 238–241 (1974).
- B. C. Park and M. S. Chung, “First-order probability density function of the integrated speckle,” Opt. Commun. 83, 5–9 (1991).
- N. George, “Speckle at various planes in an optical system,” Opt. Eng. 25, 754–764 (1986).
- H. Fujii and T. Asakura, “Effect of the point spread function on the average contrast of image speckle patterns,” Opt. Commun. 21, 80–84 (1977).
- A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, Boston, Mass., 1991).
- M. A. Berger, An Introduction to Probability and Stochastic Processes (Springer-Verlag, New York, 1993).
- P. Billingsley, Probability and Measure, 3rd ed. (Wiley, New York, 1995).
- D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960).
- R. A. Wooding, “The multivariate distribution of complex normal variables,” Biometrika 43, 212–215 (1956).
- T. L. Grettenberg, “A representation theorem for complex normal processes,” IEEE Trans. Inf. Theory IT-11, 305–306 (1965).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.