OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2113–2122

Bessel–Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis

Julio C. Gutiérrez-Vega, Rodolfo Rodríguez-Masegosa, and Sabino Chávez-Cerda  »View Author Affiliations


JOSA A, Vol. 20, Issue 11, pp. 2113-2122 (2003)
http://dx.doi.org/10.1364/JOSAA.20.002113


View Full Text Article

Acrobat PDF (491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A detailed study of the axicon-based Bessel–Gauss resonator with concave output coupler is presented. We employ a technique to convert the Huygens–Fresnel integral self-consistency equation into a matrix equation and then find the eigenvalues and the eigenfields of the resonator at one time. A paraxial ray analysis is performed to find the self-consistency condition to have stable periodic ray trajectories after one or two round trips. The fast-Fourier-transform-based Fox and Li algorithm is applied to describe the three-dimensional intracavity field distribution. Special attention was directed to the dependence of the output transverse profiles, the losses, and the modal-frequency changes on the curvature of the output coupler and the cavity length. The propagation of the output beam is discussed.

© 2003 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators

Citation
Julio C. Gutiérrez-Vega, Rodolfo Rodríguez-Masegosa, and Sabino Chávez-Cerda, "Bessel–Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis," J. Opt. Soc. Am. A 20, 2113-2122 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-11-2113


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
  2. J. Durnin, J. J. Micely, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
  3. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
  4. E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993).
  5. S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996).
  6. C. Paterson and R. Smith, “Helicon waves: propagation-invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996).
  7. R. Piestun and J. Shamir, “Generalized propagation-invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998).
  8. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
  9. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
  10. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
  11. G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
  12. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
  13. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
  14. Wen-Xiang Cong, Nan-Xian Chen, and Ben-Yuan Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998).
  15. J. Durnin and J. H. Eberly, “Diffraction free arrangement,” U.S. patent 4,887,885, December 19, 1989.
  16. K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989).
  17. P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
  18. P. A. Bélanger and C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16, 1057–1059 (1991).
  19. P. A. Bélanger, R. L. Lachance, and C. Paré, “Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator,” Opt. Lett. 17, 739–741 (1992).
  20. J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001).
  21. J. Rogel-Salazar, G. H. C. New, P. Muys, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Bessel–Gauss resonators,” in Laser Resonators IV, A. V. Kudryashov and A. H. Paxton, eds., Proc. SPIE 4270, 52–63 (2001).
  22. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
  23. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
  24. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  25. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1986), Chap. 11.
  26. W. P. Latham, Jr., and G. C. Dente, “Matrix methods for bare resonator eigenvalue analysis,” Appl. Opt. 19, 1618–1621 (1980).
  27. S. Chávez-Cerda and G. H. C. New, “Evolution of focused Hankel waves and Bessel beams,” Opt. Commun. 181, 369–378 (2000).
  28. R. Borghi and M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited