OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2123–2130

Light propagation in variable-refractive-index materials with liquid-crystal-infiltrated microcavities

Bin Wang, Philip J. Bos, and Charles D. Hoke  »View Author Affiliations


JOSA A, Vol. 20, Issue 11, pp. 2123-2130 (2003)
http://dx.doi.org/10.1364/JOSAA.20.002123


View Full Text Article

Acrobat PDF (582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A liquid-crystal-infiltrated microcavity structure is proposed as a variable-refractive-index material. It has the advantages over previously considered nanostructured materials of having a larger phase-angle change and lower driving voltage. Two-dimensional liquid-crystal director and finite-difference time-domain optical simulations are used to select liquid crystal material parameters and optimize the dimension of the microcavity structured material.

© 2003 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.3990) Optical devices : Micro-optical devices
(260.1440) Physical optics : Birefringence

Citation
Bin Wang, Philip J. Bos, and Charles D. Hoke, "Light propagation in variable-refractive-index materials with liquid-crystal-infiltrated microcavities," J. Opt. Soc. Am. A 20, 2123-2130 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-11-2123


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Matsumoto, K. Hirabayashi, S. Sakata, and T. Hayashi, “Tunable wavelength filter using nano-sized droplets of liquid crystal,” IEEE Photon. Technol. Lett. 11, 442–444 (1999).
  2. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
  3. R. J. Ondris-Crawford, “The effect of molecular anchoring and curvature on confined liquid crystal,” Ph.D. dissertation (Kent State University, Kent, Ohio, 1993).
  4. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1996).
  5. E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, Reading, Mass., 1998), Chap. 10, p. 466.
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  7. B. Witzigmann, P. Regli, and W. Fichtner, “Rigorous electromagnetic simulation of liquid crystal displays,” J. Opt. Soc. Am. A 15, 753–757 (1998).
  8. C. M. Titus, P. J. Bos, J. R. Kelly, and E. C. Gartland, “Comparison of analytical calculations to finite-difference time-domain simulations of one-dimensional spatially varying anisotropic liquid crystal structures,” Jpn. J. Appl. Phys. 38, 1488–1494 (1999).
  9. E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal display by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).
  10. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  11. A. Yefet and P. G. Petropoulos, “A staggered fourth-order accuracy explicit finite difference scheme for the time-domain Maxwell’s equations,” J. Comput. Phys. 168, 286–315 (2001).
  12. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
  13. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999), Chap. 8.
  14. C. M. Titus, “Refractive and diffractive liquid crystal beam steering devices,” Ph.D. dissertation (Kent State University, Kent, Ohio, 2000).
  15. R. D. Guenther, Modern Optics (Wiley, New York, 1990), Chap. 9.
  16. J. E. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulator Software and Technology Guide (Artech House, Boston, Mass., 2001).
  17. P. G. de Gennes and J. Prost, The Physics of Liquid Crystal (Oxford Science, Oxford, UK, 1993).
  18. D. W. Berreman, “Numerical modeling of twisted nematic devices,” Philos. Trans. R. Soc. London Ser. A 309, 203–216 (1983).
  19. H. Mori, E. C. Gartland, Jr., J. R. Kelly, and P. J. Bos, “Multidimensional director modeling using the Q tensor representation in a liquid crystal cell and its application to the π cell with patterned electrodes,” Jpn. J. Appl. Phys. 38, 135–146 (1999).
  20. R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, “Electrically switchable Bragg gratings from liquid crystal/polymer composites,” Appl. Spectrosc. 54, 12A–28A (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited