OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2131–2136

Planar photonic crystal structure with inherently single-mode waveguides

Alejandro Martinez, Jaime Garcia, Guillermo Sanchez, and Javier Marti  »View Author Affiliations


JOSA A, Vol. 20, Issue 11, pp. 2131-2136 (2003)
http://dx.doi.org/10.1364/JOSAA.20.002131


View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A planar photonic crystal that allows inherently gap-guided single-mode waveguides is proposed and discussed. This novel structure consists of a two-dimensional lattice of silicon rods embedded on a thin silica slab sandwiched between two silica claddings whose refractive indices are slightly lower than the index of the silica core. The physical parameters of the structure, i.e., rod radius and core thickness, are optimized to maximize the bandgap width for odd modes. Lossless guided modes inside the bandgap and below the claddings’ light cone are obtained by reducing the radius of a row of rods. The waveguide bandwidth can be increased by inserting a thin silicon dielectric waveguide instead of the row of rods. The proposed approach may overcome many of the common drawbacks in conventional holes-on-dielectric planar photonic crystal waveguides.

© 2003 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7400) Optical devices : Waveguides, slab

History
Original Manuscript: April 23, 2003
Revised Manuscript: July 17, 2003
Manuscript Accepted: July 23, 2003
Published: November 1, 2003

Citation
Alejandro Martinez, Jaime Garcia, Guillermo Sanchez, and Javier Marti, "Planar photonic crystal structure with inherently single-mode waveguides," J. Opt. Soc. Am. A 20, 2131-2136 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-11-2131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. T. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996). [CrossRef]
  4. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  6. T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999). [CrossRef]
  7. V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars,” Appl. Phys. Lett. 75, 3276–3278 (1999). [CrossRef]
  8. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  9. M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000). [CrossRef]
  10. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000). [CrossRef] [PubMed]
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001). [CrossRef]
  12. D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999). [CrossRef]
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  14. A. Chutinan, S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000). [CrossRef]
  15. S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  16. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000). [CrossRef]
  17. T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990). [CrossRef]
  18. S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  19. W. T. Lau, S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002). [CrossRef]
  20. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited