OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2237–2245

Measuring eye aberrations with Hartmann–Shack wave-front sensors: Should the irradiance distribution across the eye pupil be taken into account?

Salvador Bará  »View Author Affiliations


JOSA A, Vol. 20, Issue 12, pp. 2237-2245 (2003)
http://dx.doi.org/10.1364/JOSAA.20.002237


View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A usual approximation in Hartmann–Shack aberrometry is that the centroid displacements are proportional to the spatial averages of the wave-front slopes at the sampling subapertures. However, these spatial averages are actually weighted by the local irradiance distribution across each microlens. The irradiance across the eye pupil is not uniform in usual reflectometric aberrometers, which is due to several factors including retinal scattering and cone waveguiding directionality. It is shown that neglecting this fact in usual least-squares reconstruction procedures gives rise to a biased estimation of the aberration coefficients. The magnitude of this bias depends on the actual irradiance distribution across the eye pupil, the mode being estimated, the detailed modal composition of the aberrated wave front, and the geometry of the wave-front sampling array. Order-of-magnitude calculations suggest that this bias may well be in the range 5%–10% for relatively smooth irradiance distributions. The systematic nature of this error makes it advisable to check for its presence and, if required, to compensate for it by an adequate choice of the least-squares reconstruction matrix.

© 2003 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: May 2, 2003
Revised Manuscript: July 24, 2003
Manuscript Accepted: July 31, 2003
Published: December 1, 2003

Citation
Salvador Bará, "Measuring eye aberrations with Hartmann–Shack wave-front sensors: Should the irradiance distribution across the eye pupil be taken into account?," J. Opt. Soc. Am. A 20, 2237-2245 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-12-2237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  2. S. A. Burns, S. Marcos, A. E. Elsner, S. Bará, “Contrast improvement for confocal retinal imaging using phase correcting plates,” Opt. Lett. 27, 400–402 (2002). [CrossRef]
  3. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).
  4. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977). [CrossRef] [PubMed]
  5. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984). [CrossRef] [PubMed]
  6. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992). [CrossRef] [PubMed]
  7. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998). [CrossRef]
  8. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  9. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  10. P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  11. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997). [CrossRef]
  12. R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999). [CrossRef]
  13. E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000). [CrossRef]
  14. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001). [CrossRef]
  15. I. Iglesias, R. Ragazzoni, Y. Julien, P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express 10, 419–428 (2002), opticsexpress.org . [CrossRef] [PubMed]
  16. J. Hartmann, “Objektivuntersuchungen,” Z. Instrumentenkd. XXIV(1), 1–21 (1904).
  17. V. I. Tatarskii, The Propagation of Waves in the Turbulent Atmosphere (Nauka, Moscow, 1967), pp. 385–390 (in Russian).
  18. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72, 1199–1209 (1982). [CrossRef]
  19. J. Ares, T. Mancebo, S. Bará, “Position and displacement sensing with Shack–Hartmann wavefront sensors,” Appl. Opt. 39, 1511–1520 (2000). [CrossRef]
  20. J.-M. Gorrand, F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Visual Sci. (Suppl.) 31, 425 (1990).
  21. S. A. Burns, S. Wu, F. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995). [CrossRef]
  22. S. A. Burns, S. Wu, J. C. He, A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033–2040 (1997). [CrossRef]
  23. S. Marcos, S. A. Burns, J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998). [CrossRef]
  24. S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999). [CrossRef]
  25. J. C. He, S. Marcos, S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16, 2363–2369 (1999). [CrossRef]
  26. S. Marcos, S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40, 2437–2447 (2000). [CrossRef] [PubMed]
  27. S. Marcos, L. Dı́az-Santana, L. Llorente, C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?” J. Opt. Soc. Am. A 19, 1063–1072 (2002). [CrossRef]
  28. N. P. A. Zagers, T. T. J. M. Berendschot, D. van Norren, “Wavelength dependence of reflectometric cone photoreceptor directionality,” J. Opt. Soc. Am. A 20, 18–23 (2003). [CrossRef]
  29. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1987), pp. 464–468, 767–772.
  30. J. Y. Wang, D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510–1518 (1980). [CrossRef] [PubMed]
  31. D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1992), Chap. 13, pp. 455–499.
  32. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications 2000, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.
  33. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1980). [CrossRef]
  34. L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited