OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2293–2306

Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology

Peter B. Catrysse and Brian A. Wandell  »View Author Affiliations


JOSA A, Vol. 20, Issue 12, pp. 2293-2306 (2003)
http://dx.doi.org/10.1364/JOSAA.20.002293


View Full Text Article

Enhanced HTML    Acrobat PDF (1145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Following the trend of increased integration in complementary metal oxide semiconductor (CMOS) image sensors, we have explored the potential of implementing light filters by using patterned metal layers placed on top of each pixel’s photodetector. To demonstrate wavelength selectivity, we designed and prototyped integrated color pixels in a standard 0.18-µm CMOS technology. Transmittance of several one-dimensional (1D) and two-dimensional (2D) patterned metal layers was measured under various illumination conditions and found to exhibit wavelength selectivity in the visible range. We performed (a) wave optics simulations to predict the spectral responsivity of an uncovered reference pixel and (b) numerical electromagnetic simulations with a 2D finite-difference time-domain method to predict transmittances through 1D patterned metal layers. We found good agreement in both cases. Finally, we used simulations to predict the transmittance for more elaborate designs.

© 2003 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(050.2770) Diffraction and gratings : Gratings
(110.2970) Imaging systems : Image detection systems
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(230.3990) Optical devices : Micro-optical devices

History
Original Manuscript: January 14, 2003
Revised Manuscript: June 11, 2003
Manuscript Accepted: July 23, 2003
Published: December 1, 2003

Citation
Peter B. Catrysse and Brian A. Wandell, "Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology," J. Opt. Soc. Am. A 20, 2293-2306 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-12-2293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. A. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEEE Trans. Electron Devices ED-32, 1361–1389 (1985).
  2. A. J. P. Theuwissen, Solid-State Imaging with Charge-Coupled Devices, Solid-State Science and Technology Library (Kluwer Academic, Boston, Mass., 1995), p. 388.
  3. A. El Gamal, D. Yang, B. Fowler, “Pixel level processing—why, what, and how?” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 2–13.
  4. P. B. Catrysse, B. A. Wandell, A. El Gamal, “An integrated color pixel in 0.18 µm CMOS technology,” in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 559–562.
  5. J. Adams, K. Parulski, K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18, 20–30 (1998). [CrossRef]
  6. P. Dillon, D. Lewis, F. Kaspar, “Color imaging using a single CCD array,” IEEE Trans. Electron Devices ED-25, 102–107 (1978). [CrossRef]
  7. B. E. Bayer, “Color imaging array,” U.S. Patent3,971,065 (July20, 1976).
  8. H. Nabeyama, “All-solid-state color camera with single-chip MOS imager,” IEEE Trans. Consumer Electron. CE-27, 40–45 (1981). [CrossRef]
  9. P. B. Catrysse, B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002). [CrossRef]
  10. A. J. Blanksby, M. J. Loinaz, “Performance analysis of a color CMOS photogate image sensor,” IEEE Trans. Electron Devices 47, 55–64 (2000). [CrossRef]
  11. W. Li, P. Ogunbona, S. Yu, I. Kharitonenko, “Modelling of color cross-talk in CMOS image sensors,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 3576–3579.
  12. P. B. Catrysse, X. Liu, A. El Gamal, “Quantum efficiency reduction due to pixel vignetting in CMOS image sensors,” in Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, M. M. Blouke, N. Sampat, G. M. Williams, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 420–430.
  13. M. Böhm, H. Stiebig, “Trichromatic sensor,” U.S. Patent5,923,049 (July13, 1999).
  14. R. B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well strucuture,” U.S. Patent5,965,875 (October12, 1999).
  15. H. Hertz, “Ueber Strahlen electrischer Kraft,” Annal. Phys. Chem. 36, 769–783 (1889). [CrossRef]
  16. P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980). [CrossRef]
  17. H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band,” Opt. Lett. 22, 419–421 (1997). [CrossRef] [PubMed]
  18. M. A. Jensen, G. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191–2198 (2000). [CrossRef]
  19. E. R. Fossum, “Active pixel sensors: are CCD’s dinosaurs?” in Charge-Coupled Devices and Solid State Optical Sensors III, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 2–14.
  20. B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1998), pp. 178–185.
  21. H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.
  22. OptiFDTD 2.0, Optiwave Corporation, Ottawa, Canada, 2001.
  23. D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.
  24. E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998). [CrossRef]
  25. P. B. Catrysse, A. El Gamal, B. A. Wandell, “Comparative analysis of color architectures for image sensors,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 26–35.
  26. T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000). [CrossRef]
  27. K. Shlager, J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Trans. Antennas Propag. Mag.April1995, pp. 39–56. [CrossRef]
  28. A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  29. A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988). [CrossRef]
  30. E. A. Navarro, B. Gimeno, J. L. Cruz, “Modelling of periodic structures using finite difference time domain method combined with the Floquet theorem,” Electron. Lett. 29, 446–447 (1993). [CrossRef]
  31. K. H. Dridi, A. Bjarklev, “Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity,” Appl. Opt. 38, 1668–1676 (1999). [CrossRef]
  32. T. O. Körner, R. Gull, “Combined optical/electric simulation of CCD cell structures by means of the finite-difference time-domain method,” IEEE Trans. Electron Devices 47, 931–938 (2000). [CrossRef]
  33. R. Holland, J. W. Williams, “Total-field versus scattered-field finite-difference codes: a comparative assessment,” IEEE Trans. Nucl. Sci. NS-30, 4583–4588 (1983). [CrossRef]
  34. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  35. M. A. Ordal, “Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  36. R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980). [CrossRef]
  37. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935). [CrossRef]
  38. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  39. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]
  40. Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 57403-1–57403-4 (2002). [CrossRef]
  41. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 596–640 (1950).
  42. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 706–782 (1950).
  43. P. C. S. Hayfield, G. W. T. White, “An assessment of the suitability of the Drude–Tronstad polarized light method for the study of film growth on polycrystalline metals,” in Ellipsometry in the Measurement of Surfaces and Thin Films, N. M. Bashara, A. B. Buckman, A. C. Hall, eds. (National Bureau of Standards, Washington, D.C., 1964), pp. 157–200.
  44. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1997).
  45. M. Born, E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, UK, 1980), pp. 38–41.
  46. M. V. Klein, T. E. Furtak, Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1986), p. 71.
  47. J. H. Weaver, H. P. R. Frederikse, eds., Optical Properties of Metals and Semiconductors, 74th ed., CRC Handbook of Chemistry and Physics (CRC, Boca Raton, Fla., 2000), pp. 12–109 and 112–131.
  48. A. El Gamal, “EE392B: introduction to image sensors and digital cameras” (2001), retrieved 2002, http://www.stanford.edu/class/ee392b .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited