OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2355–2364

Generalized diffusion model in optical tomography with clear layers

Guillaume Bal and Kui Ren  »View Author Affiliations

JOSA A, Vol. 20, Issue 12, pp. 2355-2364 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a generalized diffusion equation that models the propagation of photons in highly scattering domains with thin nonscattering clear layers. Classical diffusion models break down in the presence of clear layers. The model that we propose accurately accounts for the clear-layer effects and has a computational cost comparable to that of classical diffusion. It is based on modeling the propagation in the clear layer as a local tangential diffusion process. It can be justified mathematically in the limit of small mean free paths and is shown numerically to be very accurate in two- and three-dimensional idealized cases. We believe that this model can be used as an accurate forward model in optical tomography.

© 2003 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

Original Manuscript: February 17, 2003
Revised Manuscript: July 15, 2003
Manuscript Accepted: August 20, 2003
Published: December 1, 2003

Guillaume Bal and Kui Ren, "Generalized diffusion model in optical tomography with clear layers," J. Opt. Soc. Am. A 20, 2355-2364 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  2. A. Y. Bluestone, G. S. Abdoulaev, C. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical-tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), optics-express.org . [CrossRef] [PubMed]
  3. O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998). [CrossRef]
  4. V. A. Markel, J. C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier–Laplace inverse formula,” J. Opt. Soc. Am. A 18, 1336–1347 (2001). [CrossRef]
  5. V. A. Markel, J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19, 558–566 (2002). [CrossRef]
  6. G. J. Müller, ed., Medical Optical Tomography: Functional Imaging and Optical Technologies, IS Series Vol. IS11 (SPIE Press, Bellingham, Wash., 1993).
  7. F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM Monographs on Mathematical Modelling and Computation (SIAM, Philadelphia, Pa., 2001).
  8. “Session on Optical Tomography and Optical Imaging,” Progress in Electromagnetic Research Symposium (PIERS), July 1–5, 2002, Cambridge, Massachusetts.
  9. A. D. Klose, A. H. Hielscher, “Optical tomography using the time independent equation of radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 72, 715–732 (2002). [CrossRef]
  10. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Engineering (Springer-Verlag, Berlin, 1993), Vol. 6.
  11. E. W. Larsen, J. B. Keller, “Asymptotic solution of neutron transport problems for small mean free paths,” J. Math. Phys. 15, 75–81 (1974). [CrossRef]
  12. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef] [PubMed]
  13. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, H. Deh-ghani, “Boundary conditions for light propagation in diffuse media with non-scattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000). [CrossRef]
  14. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Deply, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000). [CrossRef]
  15. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef] [PubMed]
  16. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001). [CrossRef]
  17. G. Bal, Y. Maday, “Coupling of transport and diffusion models in linear transport theory,” M2AN Math. Model. Numer. Anal. 36, 69–86 (2002). [CrossRef]
  18. G. Bal, X. Warin, “Discrete ordinate methods in xy-geometry with spatially varying angular discretization,” Nucl. Sci. Eng. 127, 169–181 (1997).
  19. F. Golse, S. Jin, C. D. Levermore, “The convergence of numerical transfer schemes in diffusive regimes. I. Discrete-ordinate method,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 36, 1333–1369 (1999). [CrossRef]
  20. E. W. Larsen, J. E. Morel, W. F. Miller, “Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes,” J. Chem. Phys. 69, 283–324 (1987).
  21. M. Tidriri, “Asymptotic analysis of a coupled system of kinetic equations,” C. R. Acad. Sci. Paris Ser. I Math. t.328, 637–642 (1999). [CrossRef]
  22. G. Bal, “Particle transport through scattering regions with clear layers and inclusions,” J. Comput. Phys. 180, 659–685 (2002). [CrossRef]
  23. G. Bal, “Transport through diffusive and non-diffusive regions, embedded objects, and clear layers,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 62, 1677–1697 (2002). [CrossRef]
  24. M. Choulli, P. Stefanov, “Reconstruction of the coefficients of the stationary transport equation from boundary measurements,” Inverse Probl. 12, L19–L23 (1996). [CrossRef]
  25. A. Tamasan, “An inverse boundary value problem in two-dimensional transport,” Inverse Probl. 18, 209–219 (2002). [CrossRef]
  26. G. Bal, V. Freilikher, G. Papanicolaou, L. Ryzhik, “Wave transport along surfaces with random impedance,” Phys. Rev. B 62, 6228–6240 (2000). [CrossRef]
  27. J. M. Luck, T. M. Nieuwenhuizen, “Light scattering from mesoscopic objects in diffusive media,” Eur. Phys. J. B 7, 483–500 (1999). [CrossRef]
  28. M. Firbank, S. A. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996). [CrossRef] [PubMed]
  29. S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods (Springer-Verlag, New York, 2002).
  30. J. Spanier, E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited