OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 218–233

Cramér–Rao sensitivity limits for astronomical instruments: implications for interferometer design

Jonas Zmuidzinas  »View Author Affiliations

JOSA A, Vol. 20, Issue 2, pp. 218-233 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiple-telescope interferometry for high-angular-resolution astronomical imaging in the optical–IR–far-IR bands is currently a topic of great scientific interest. The fundamentals that govern the sensitivity of direct-detection instruments and interferometers are reviewed, and the rigorous sensitivity limits imposed by the Cramér–Rao theorem are discussed. Numerical calculations of the Cramér–Rao limit are carried out for a simple example, and the results are used to support the argument that interferometers that have more compact instantaneous beam patterns are more sensitive, since they extract more spatial information from each detected photon. This argument favors arrays with a larger number of telescopes, and it favors all-on-one beam-combining methods as compared with pairwise combination.

© 2003 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(110.4280) Imaging systems : Noise in imaging systems
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(270.5290) Quantum optics : Photon statistics
(350.1270) Other areas of optics : Astronomy and astrophysics

Original Manuscript: April 24, 2002
Revised Manuscript: July 23, 2002
Manuscript Accepted: July 23, 2002
Published: February 1, 2003

Jonas Zmuidzinas, "Cramér–Rao sensitivity limits for astronomical instruments: implications for interferometer design," J. Opt. Soc. Am. A 20, 218-233 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Quirrenbach, “Optical interferometry,” Annu. Rev. Astron. Astrophys. 39, 353–401 (2001). [CrossRef]
  2. S. K. Saha, “Modern optical astronomy:  technology and impact of interferometry,” Rev. Mod. Phys. 74, 551–600 (2002). [CrossRef]
  3. See http://olbin.jpl.nasa.gov .
  4. See http://www.nrao.edu .
  5. M. Shao, “SIM: the space interferometry mission,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 536–540 (1998), see also http://sim.jpl.nasa.gov . [CrossRef]
  6. C. A. Beichman, “Terrestrial Planet Finder: the search for life-bearing planets around other stars,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 719–723 (1998), see also http://planetquest.jpl.nasa.gov . [CrossRef]
  7. A. J. Penny, A. Leger, J. Mariotti, C. Schalinski, C. Eiroa, R. J. Laurance, M. Fridlund, “Darwin interferometer,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE3350, 666–671 (1998), see also http://sci.esa.int/darwin . [CrossRef]
  8. D. Leisawitz, J. C. Mather, S. Harvey Moseley, X. Zhang, “The Submillimeter Probe of the Evolution of Cosmic Structure (SPECS),” Astrophys. Space Sci. 269, 563–567 (1999). [CrossRef]
  9. M. Shao, W. Danchi, M. J. DiPirro, M. Dragovan, L. D. Feinberg, M. Hagopian, W. D. Langer, C. R. Lawrence, P. R. Lawson, D. T. Leisawitz, J. C. Mather, S. H. Moseley, M. R. Swain, H. W. Yorke, X. Zhang, “Space-based interfero-metric telescopes for the far infrared,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 772–781 (2000). [CrossRef]
  10. D. T. Leisawitz, W. C. Danchi, M. J. DiPirro, L. D. Feinberg, D. Y. Gezari, M. Hagopian, W. D. Langer, J. C. Mather, S. H. Moseley, M. Shao, R. F. Silverberg, J. Staguhn, M. R. Swain, H. W. Yorke, X. Zhang, “Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 36–46 (2000). [CrossRef]
  11. A. Blain, R. Ivison, I. Smail, “Observational limits to source confusion in the millimetre/submillimetre waveband,” Mon. Not. R. Astron. Soc. 296, L29–L33 (1998). [CrossRef]
  12. I. Smail, R. J. Ivison, A. W. Blain, “A deep submillimeter survey of lensing clusters:  a new window on galaxy formation and evolution,” Astrophys. J. 490, L5–L8 (1997). [CrossRef]
  13. D. Hughes, S. Serjeant, J. Dunlop, M. Rowan-Robinson, A. Blain, R. G. Mann, R. Ivison, J. Peacock, A. Efstathiou, W. Gear, S. Oliver, A. Lawrence, M. Longair, P. Goldschmidt, T. Jenness, “High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey,” Nature 394, 241–247 (1998). [CrossRef]
  14. A. Barger, L. Cowie, D. Sanders, E. Fulton, Y. Taniguchi, Y. Sato, K. Kawara, H. Okuda, “Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift,” Nature 394, 248–251 (1998). [CrossRef]
  15. F. Roddier, “Pupil plane versus image plane in Michelson stellar interferometry,” J. Opt. Soc. Am. A 3, 2160–2166 (1986). [CrossRef]
  16. W. Traub, “Combining beams from separated telescopes,” Appl. Opt. 25, 528–532 (1986). [CrossRef] [PubMed]
  17. S. Prasad, S. R. Kulkarni, “Noise in optical synthesis images. I. Ideal Michelson interferometer,” J. Opt. Soc. Am. A 6, 1702–1714 (1989). [CrossRef]
  18. M. Faucherre, B. Delabre, P. Dierickx, F. Merkle, “Michelson versus Fizeau type beam combination—Is there a difference?” in Amplitude and Intensity Spatial Interferometry, Proc. SPIE1237, 206–217 (1990). [CrossRef]
  19. S. R. Kulkarni, S. Prasad, T. Nakajima, “Noise in optical synthesis images. II. Sensitivity of an  nC2 interferometer with bispectrum imaging,” J. Opt. Soc. Am. A 8, 499–510 (1991). [CrossRef]
  20. S. Prasad, “Sensitivity limits on an image-plane fiber interferometer at low-light levels,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 51–59 (1994). [CrossRef]
  21. L. Mugnier, G. Rousset, F. Cassaing, “Aperture configuration optimality criterion for phased arrays of optical telescopes,” J. Opt. Soc. Am. A 13, 2367–2374 (1996). [CrossRef]
  22. F. Roddier, S. T. Ridgway, “Filling factor and signal-to-noise ratios in optical interferometric arrays,” Publ. Astron. Soc. Pac. 111, 990–996 (1999). [CrossRef]
  23. T. Nakajima, “Sensitivity of a ground-based infrared interferometer for aperture synthesis imaging,” Publ. Astron. Soc. Pac. 113, 1289–1299 (2001). [CrossRef]
  24. T. Nakajima, H. Matsuhara, “Sensitivity of an imaging space infrared interferometer,” Appl. Opt. 40, 514–526 (2001). [CrossRef]
  25. The author is preparing a manuscript to be called “Thermal noise and correlations in photon detection.”
  26. S. W. Wedge, “Computer-aided design of noise microwave circuits,” Ph.D. thesis (California Institute of Technology, Pasadena, Calif., 1991).
  27. S. W. Wedge, D. B. Rutledge, “Wave computations for microwave education,” IEEE Trans. Educ. 36, 127–131 (1993). [CrossRef]
  28. H. Bosma, “On the theory of linear noisy systems,” Philips Res. Rep. Suppl. 10, 1–190 (1967).
  29. S. W. Wedge, D. B. Rutledge, “Noise waves and passive linear multiports,” IEEE Microwave Guid. Wave Lett. 1, 117–119 (1991). [CrossRef]
  30. S. W. Wedge, D. B. Rutledge, “Wave techniques for noisemodeling and measurement,” IEEE Trans. Microwave Theory Tech. 40, 2004–2012 (1992). [CrossRef]
  31. in Principles of Microwave Circuits, Vol. 8 of M.I.T. Radiation Laboratory Series, C. G. Montgomery, R. H. Dicke, E. M. Purcell, eds. (McGraw-Hill, New York, 1948), Chap. 9, pp. 317–333.
  32. W. K. Kahn, W. Wasylkiwskyj, “Coupling, radiation, and scattering by antennas,” in Proceedings of the Symposium on Generalized Networks, Vol. 16 of Microwave Research Institute Symposia Series (Polytechnic, New York, 1966), pp. 83–114.
  33. A. C. Gately, D. J. R. Stock, B. R.-S. Cheo, “A network description for antenna problems,” Proc. IEEE 56, 1181–1193 (1968). [CrossRef]
  34. S. Withington, J. Murphy, “Modal analysis of partially coherent submillimeter-wave quasi-optical systems,” IEEE Trans. Antennas Propag. 46, 1651–1659 (1998). [CrossRef]
  35. P. Kern, F. Malbet, eds., Integrated Optics for Astronomical Interferometry (Bastinelli-Guirimand, Grenoble, France, 1996).
  36. J. Berger, P. Haguenauer, P. Kern, K. Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, W. Traub, “Integrated optics for astronomical interferometry. IV. First measurements of stars,” Astron. Astrophys. 376, L31–L34 (2001). [CrossRef]
  37. L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982). [CrossRef] [PubMed]
  38. R. Molina, J. Núñez, F. J. Cortijo, J. Mateos, “Image restoration in astronomy—a Bayesian perspective,” IEEE Signal Process. Mag. 18, 11–29 (2001). [CrossRef]
  39. A. J. Weiss, E. Weinstein, “Fundamental limitations in passive time-delay estimation—Part I:  narrow-band systems,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-32, 472–486 (1983). [CrossRef]
  40. E. Weinstein, A. J. Weiss, “Fundamental limitations in passive time-delay estimation—Part II: wide-band systems,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-32, 1064–1078 (1984). [CrossRef]
  41. K. L. Bell, Y. Ephraim, H. L. Van Trees, “Explicit Ziv–Zakai lower bound for bearing estimation,” IEEE Trans. Signal Process. 44, 2810–2824 (1996). [CrossRef]
  42. J. G. Cohen, “Tests of the photometric accuracy of image restoration using the maximum entropy algorithm,” Astron. J. 101, 734–737 (1991). [CrossRef]
  43. P. Jakobsen, P. Greenfield, R. Jedrzejcwski, “The Cramer–Rao lower bound and stellar photometry with aberrated HST images,” Astron. Astrophys. 253, 329–332 (1992).
  44. C. H. Hua, N. H. Clinthorne, S. J. Wilderman, J. W. LeBlanc, W. L. Rogers, “Quantitative evaluation of information loss for Compton cameras,” IEEE Trans. Nucl. Sci. 46, 587–593 (1999). [CrossRef]
  45. H. Cramér, Mathematical Methods of Statistics (Princeton U. Press, Princeton, N. J., 1946).
  46. C. R. Rao, “Information and accuracy attainable in the estimation of statistical parameters,” Bull. Calcutta Math. Soc. 37, 81–91 (1945).
  47. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968).
  48. P. Stoica, T. L. Marzetta, “Parameter estimation problems with singular information matrices,” IEEE Trans. Signal Process. 49, 87–90 (2001). [CrossRef]
  49. E. Serabyn, “Nulling interferometry and planet detection,” in Principles of Long Baseline Stellar Interferometry, Course Notes from the 1999 Michelson Summer School, August 15–19, 1999, P. R. Lawson, ed., NASA/JPL Publication 00-009 Rev. 1 03-01 (NASA/Jet Propulsion Laboratory, Pasadena, Calif.2000), pp. 275–292.
  50. E. Serabyn, M. M. Colavita, “Fully symmetric nulling beam combiners,” Appl. Opt. 40, 1668–1671 (2001). [CrossRef]
  51. J. Butler, R. Lowe, “Beam-forming matrix simplifies design of electronically scanned antennas,” Electron. Des. 9, 170–173 (1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited