OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 325–332

Adaptive phase-shifting algorithm for temporal phase evaluation

Pablo D. Ruiz, Jonathan M. Huntley, and Guillermo H. Kaufmann  »View Author Affiliations

JOSA A, Vol. 20, Issue 2, pp. 325-332 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Most standard temporal-phase-shifting (TPS) algorithms evaluate the phase by computing a windowed Fourier transform (WFT) of the intensity signal at the carrier frequency of the system. However, displacement of the specimen during image acquisition may cause the peak of the transform to shift away from the carrier frequency, leading to phase errors and even unwrapping failure. We present a novel TPS method that searches for the peak of the WFT and evaluates the phase at that frequency instead of at the carrier frequency. The performance of this method is compared with that of standard algorithms by using numerical simulations. Experimental results from high-speed speckle interferometry studies of carbon fiber panels are also presented.

© 2003 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

Original Manuscript: April 17, 2002
Revised Manuscript: August 28, 2002
Manuscript Accepted: August 28, 2002
Published: February 1, 2003

Pablo D. Ruiz, Jonathan M. Huntley, and Guillermo H. Kaufmann, "Adaptive phase-shifting algorithm for temporal phase evaluation," J. Opt. Soc. Am. A 20, 325-332 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (Wiley, Chichester, 2001).
  2. D. W. Robinson, G. T. Reid, eds., Interferogram Analysis (Institute of Physics, Bristol, 1993).
  3. I. Yamaguchi, J. Y. Liu, J. Kato, “Active phase-shifting interferometers for shape and deformation measurements,” Opt. Eng. 35, 2930–2937 (1996). [CrossRef]
  4. X. C. de Lega, “Processing of non-stationary interference patterns: adapted phase-shifting algorithms and wavelet analysis. Application to dynamic deformation measurements by holographic and speckle interferometry,” Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1997).
  5. J. M. Huntley, G. H. Kaufmann, D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999). [CrossRef]
  6. P. Haible, M. P. Kothiyal, H. J. Tiziani, “Heterodyne temporal speckle-pattern interferometry,” Appl. Opt. 39, 114–117 (2000). [CrossRef]
  7. J. M. Kilpatrick, A. J. Moore, J. S. Barton, J. D. C. Jones, M. Reeves, C. Buckberry, “Measurement of complex surface deformation at audio acoustic frequencies by high-speed dynamic phase-stepped digital speckle pattern interferometry,” Opt. Lett. 25, 1068–1070 (2000). [CrossRef]
  8. J. M. Huntley, H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993). [CrossRef] [PubMed]
  9. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef]
  10. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987). [CrossRef] [PubMed]
  11. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef] [PubMed]
  12. J. M. Huntley, “Suppression of phase errors from vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 15, 2233–2241 (1998). [CrossRef]
  13. P. D. Ruiz, J. M. Huntley, J. Shen, C. R. Coggrave, G. H. Kaufmann, “Vibration-induced phase errors in high-speed phase-shifting speckle pattern interferometry,” Appl. Opt. 40, 2117–2125 (2001). [CrossRef]
  14. P. D. Ruiz, J. M. Huntley, J. Shen, C. R. Coggrave, G. H. Kaufmann, “Effects of random vibration in high-speed phase-shifting speckle pattern interferometry,” Appl. Opt. 41, 3941–3949 (2002). [CrossRef] [PubMed]
  15. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966). [CrossRef]
  16. M. Cherbuliez, P. M. Jacquot, X. Colonna de Lega, “Wavelet processing of interferometric signals and fringe patterns,” in Wavelet Applications in Signal and Image Processing VII, M. A. Unser, A. Aldroubi, A. F. Laine, eds., Proc. SPIE3813, 692–702 (1999). [CrossRef]
  17. B. Bessason, C. Madshus, H. A. Frøystein, H. Kolbjørnsen, “Vibration criteria for metrology laboratories,” Meas. Sci. Technol. 10, 1009–1014 (1999). [CrossRef]
  18. E. E. Ungar, D. H. Sturz, C. H. Amick, “Vibration control design of high technology facilities,” Sound Vib. 7, 20–27 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited