OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 489–498

Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere

Túlio M. Bambino, Ana Maria S. Breitschaft, Valmar C. Barbosa, and Luiz G. Guimarães  »View Author Affiliations


JOSA A, Vol. 20, Issue 3, pp. 489-498 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000489


View Full Text Article

Acrobat PDF (408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

© 2003 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

Citation
Túlio M. Bambino, Ana Maria S. Breitschaft, Valmar C. Barbosa, and Luiz G. Guimarães, "Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere," J. Opt. Soc. Am. A 20, 489-498 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-489


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Scharfman, “Scattering from dielectric coated spheres in the region of the 1st resonance,” J. Appl. Phys. 25, 1352–1356 (1954).
  2. V. H. Weston and R. Hemenger, “High-frequency scattering from a coated sphere,” J. Res. Natl. Bur. Stand. 66D, 613–619 (1962).
  3. J. Rheinstein, “Scattering of electromagnetic waves from dielectric coated conducting spheres,” IEEE Trans. Antennas Propag. AP-12, 334–340 (1964).
  4. E. L. Murphy, “Reduction of electromagnetic backscatter from a plasma-clad conducting body,” J. Appl. Phys. 36, 1918–1927 (1965).
  5. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from 2 concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
  6. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  7. H. M. Nussenzweig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, Cambridge, UK, 1992).
  8. L. G. Guimarães and H. M. Nussenzveig, “Theory of Mie resonances and ripple fluctuations,” Opt. Commun. 89, 363–369 (1992).
  9. L. G. Guimarães and H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41, 625–647 (1994).
  10. L. G. Guimarães, “Theory of Mie caustics,” Opt. Commun. 103, 339–344 (1993).
  11. T. Kaiser, S. Lange, and G. Schweiger, “Structural resonances in a coated sphere—investigation of the volume-averaged source function and resonance positions,” Appl. Opt. 33, 7789–7797 (1994).
  12. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).
  13. T. M. Bambino and L. G. Guimarães, “Resonances of a coated sphere,” Phys. Rev. E 53, 2859–2863 (1996).
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. S. C. Hill and R. E. Benner, Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  16. S. C. Hill and R. K. Chang, Nonlinear Optics in Droplets (Nova Science, New York, 1995).
  17. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
  18. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
  19. J. A. Lock, J. M. Jamison, and C. Y. Lin, “Rainbow scattering by a coated sphere,” Appl. Opt. 33, 4677–4690 (1994).
  20. G. Roll, T. Kaiser, S. Lange, and G. Schweiger, “Ray interpretation of multipole fields in spherical dielectric cavities,” J. Opt. Soc. Am. A 15, 2879–2891 (1998).
  21. C. J. Joachain, Quantum Collision Theory (North-Holland, Amsterdam, 1987).
  22. J. R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (Wiley, New York, 1972).
  23. G. Videen, J. Li, P. Chýlek, “Resonances and poles of weakly absorbing spheres,” J. Opt. Soc. Am. A 12, 916–921 (1995).
  24. E. P. Wigner, “Lower limit for the energy derivative of the scattering phase shift,” Phys. Rev. 98, 145–147 (1955).
  25. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964).
  26. H. M. Nussenzveig, “Time delay in electromagnetic scattering,” Phys. Rev. A 55, 1012–1019 (1997).
  27. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1968).
  28. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  29. J. B. Keller and S. I. Rubinow, “Asymptotic solution of eigenvalue problems,” Ann. Phys. 9, 24–75 (1960).
  30. R. W. Robinett, “Periodic orbit theory analysis of the circular disk or annular billiard: nonclassical effects and the distribution of energy eigenvalues,” Am. J. Phys. 67, 67–77 (1999).
  31. P. Chýlek, G. Videen, D. Ngo, R. G. Pinnick, and J. D. Klett, “Effect of black carbon on the optical properties and climate forcing of sulfate aerosols,” J. Geophys. Res. Atmos. 100, 16325–16332 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited