OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 513–521

Global spectral irradiance variability and material discrimination at Boulder, Colorado

Zhihong Pan, Glenn Healey, and David Slater  »View Author Affiliations


JOSA A, Vol. 20, Issue 3, pp. 513-521 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000513


View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze 7258 global spectral irradiance functions over 0.4–2.2 µm that were acquired over a wide range of conditions at Boulder, Colorado, during the summer of 1997. We show that low-dimensional linear models can be used to capture the variability in these spectra over both the visible and the 0.4–2.2 µm spectral ranges. Using a linear model, we compare the Boulder data with the previous study of Judd [J. Opt. Soc. Am. 54, 1031 (1964)] over the visible wavelengths. We also examine the agreement of the Boulder data with a spectral database generated by using the MODTRAN 4.0 radiative transfer code. We use a database of 223 minerals to consider the effect of the spectral variability in the global spectral irradiance functions on hyperspectral material identification. We show that the 223 minerals can be discriminated accurately over the variability in the Boulder data with subspace projection techniques.

© 2003 Optical Society of America

OCIS Codes
(150.2950) Machine vision : Illumination
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: August 16, 2002
Revised Manuscript: October 24, 2002
Manuscript Accepted: November 5, 2002
Published: March 1, 2003

Citation
Zhihong Pan, Glenn Healey, and David Slater, "Global spectral irradiance variability and material discrimination at Boulder, Colorado," J. Opt. Soc. Am. A 20, 513-521 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Healey, S. Shafer, L. Wolff, eds., Physics-Based Vision: Principles and Practice, COLOR (Jones and Bartlett, Boston, Mass.1992).
  2. G. Healey, Q.-T. Luong, “Color in computer vision: recent progress,” in Handbook of Pattern Recognition and Computer Vision, C. Chen, L. Pau, P. Wang, eds. (World Scientific, Singapore, 1999), pp. 283–312.
  3. D. Marimont, B. Wandell, “Linear models of surfaceand illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913 (1992). [CrossRef] [PubMed]
  4. L. Maloney, B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  5. J. Ho, B. Funt, M. Drew, “Separating a color signal into illumination and surface reflectance components: theory and applications,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 966–977 (1990). [CrossRef]
  6. M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993). [CrossRef]
  7. L. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  8. G. Healey, L. Benites, “Linear models for spectral reflectance functions over the mid-wave and long-wave infrared,” J. Opt. Soc. Am. A 15, 2216–2227 (1998). [CrossRef]
  9. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964). [CrossRef]
  10. J. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  11. M. Vrhel, R. Gershon, L. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  12. D. Judd, D. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  13. S. Das, V. Sastri, “Spectral distribution and color of tropical daylight,” J. Opt. Soc. Am. 55, 319–323 (1965). [CrossRef]
  14. E. Dixon, “Spectral distribution of Australian daylight,” J. Opt. Soc. Am. 68, 437–450 (1978). [CrossRef]
  15. J. Hernández-Andrés, J. Romero, A. Garcı́a-Beltrán, J. Nieves, “Testing linear models on spectral daylight measurements,” Appl. Opt. 37, 971–977 (1998). [CrossRef]
  16. J. Romero, A. Garcı́a-Beltrán, J. Hernández-Andrés, “Linear bases for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007–1014 (1997). [CrossRef]
  17. J. Hernández-Andrés, J. Romero, “Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain,” J. Opt. Soc. Am. A 18, 412–420 (2001). [CrossRef]
  18. J. Hernández-Andrés, J. Romero, J. Nieves, “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001). [CrossRef]
  19. V. Sastri, S. Das, “Spectral distribution and colorof north sky at Delhi,” J. Opt. Soc. Am. 56, 829–830 (1966). [CrossRef]
  20. V. Sastri, S. Das, “Typical spectral distributions and color for tropical daylight,” J. Opt. Soc. Am. 58, 391–398 (1968). [CrossRef]
  21. G. Winch, M. Boshoff, C. Kok, A. DuToit, “Spectroradiometric and calorimetric characteristics of daylight in the Southern Hemisphere: Pretoria, South Africa,” J. Opt. Soc. Am. 56, 456–464 (1966). [CrossRef]
  22. D. Slater, G. Healey, “Analyzing the spectral dimension-ality of outdoor visible and near-infrared illumination functions,” J. Opt. Soc. Am. A 15, 2913–2920 (1998). [CrossRef]
  23. L. Rickard, R. Basedow, E. Zalewski, P. Silverglate, M. Landers, “HYDICE: an airborne system for hyperspectral imaging,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 173–179 (1993). [CrossRef]
  24. C. Simi, S. Beaven, E. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. Shen, M. Descovr, eds., Proc. SPIE4049, 218–229 (2000). [CrossRef]
  25. G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44, 127–143 (1993). [CrossRef]
  26. A. Berk, L. Bernstein, D. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass., 1989).
  27. G. Golub, C. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).
  28. G. Wyszecki, W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  29. Commission Internationale de l’Éclairage, Colorimetry, 2nd ed. (Bureau Central de la CIE, Paris, 1986), Rep. 15.2.
  30. B. Kránicz, J. Schanda, “Reevaluation of daylightspectral distributions,” Color Res. Appl. 25, 250–259 (2000). [CrossRef]
  31. J. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997).
  32. L. Rothman, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transf. 48, 469–507 (1992). [CrossRef]
  33. S. Clough, M. Iacono, J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992). [CrossRef]
  34. R. Clark, G. Swayze, A. Gallagher, T. King, W. Calvin, “The U.S. geological survey, digital spectral library: version 1: 0.2 to 3.0 microns,” (U.S. Geological Survey, Reston, Va., 1993).
  35. R. Resmini, M. Kappus, W. Aldrich, J. Harsanyi, M. Anderson, “Mineral mapping with Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at Cuprite, Nevada, USA,” Int. J. Remote Sens. 18, 1553–1570 (1997). [CrossRef]
  36. F. Kruse, K. Kierein-Young, J. Boardman, “Mineral mapping at Cuprite, Nevada, with a 63-channel imaging spectrometer,” Photogramm. Eng. Remote Sens. 56, 83–92 (1990).
  37. G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited