OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 522–532

Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms

Soo-Chang Pei and Jian-Jiun Ding  »View Author Affiliations


JOSA A, Vol. 20, Issue 3, pp. 522-532 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000522


View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The offset Fourier transform (offset FT), offset fractional Fourier transform (offset FRFT), and offset linear canonical transform (offset LCT) are the space-shifted and frequency-modulated versions of the original transforms. They are more general and flexible than the original ones. We derive the eigenfunctions and the eigenvalues of the offset FT, FRFT, and LCT. We can use their eigenfunctions to analyze the self-imaging phenomena of the optical system with free spaces and the media with the transfer function exp[j(h2x2+h1x+h0)] (such as lenses and shifted lenses). Their eigenfunctions are also useful for resonance phenomena analysis, fractal theory development, and phase retrieval.

© 2003 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.6020) Fourier optics and signal processing : Continuous optical signal processing

History
Original Manuscript: October 11, 2002
Manuscript Accepted: October 15, 2002
Published: March 1, 2003

Citation
Soo-Chang Pei and Jian-Jiun Ding, "Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms," J. Opt. Soc. Am. A 20, 522-532 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. N. Bracewell, The Fourier Integral and Its Applications (McGraw-Hill, Boston, Mass., 2000).
  2. L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994). [CrossRef]
  3. H. M. Ozaktas, M. A. Kutay, Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2000).
  4. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980). [CrossRef]
  5. K. B. Wolf, “Canonical transforms,” in Integral Transforms in Science and Engineering, K. B. Wolf, ed. (Plenum, New York, 1979), Chap. 9, pp. 381–416.
  6. S. Abe, J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994). [CrossRef] [PubMed]
  7. D. F. V. James, G. S. Agarwal, “The generalized Fresnel transform and its applications to optics,” Opt. Commun. 126, 207–212 (1996). [CrossRef]
  8. S. C. Pei, J. J. Ding, “Eigenfunctions of linear canonical transform,” IEEE Trans. Signal Process. 50, 11–26 (2002). [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  10. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).
  11. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  12. P. Pellat-Finet, G. Bonnet, “Fractional order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994). [CrossRef]
  13. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Graded-index fibers, Wigner distribution and the fractional Fourier transform,” Appl. Opt. 33, 6188–6193 (1994). [CrossRef] [PubMed]
  14. S. Abe, J. T. Sheridan, “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach,” J. Phys. A 27, 4179–4187 (1994). [CrossRef]
  15. S. Abe, J. T. Sheridan, “Corrigenda to ‘Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach’,” J. Phys. A 27, 7937–7938 (1994). [CrossRef]
  16. T. Alieva, A. M. Barbe, “Self-fractional Fourier functions and selection of modes,” J. Phys. A 30, 211–215 (1997). [CrossRef]
  17. S. G. Lipson, H. Lipson, Optical Physics (Cambridge U. Press, Cambridge, UK, 1981).
  18. S. C. Pei, J. J. Ding, Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, are preparing a manuscript to be called “Properties and applications of the eigenfunctions of the linear canonical transform.”
  19. M. L. Mehta, “Eigenvalues and eigenvectors of the finite Fourier transform,” J. Math. Phys. 28, 781–785 (1987). [CrossRef]
  20. T. Alieva, M. J. Bastiaans, “Finite-mode analysis by means of intensity information on fractional optical systems,” J. Opt. Soc. Am. A 19, 481–484 (2002). [CrossRef]
  21. T. Alieva, M. J. Bastiaans, “Mode analysis in optics through fractional transforms,” Opt. Lett. 24, 1206–1208 (1999). [CrossRef]
  22. T. Alieva, M. J. Bastiaans, “Powers of transfer matrices determined by means of eigenfunctions,” J. Opt. Soc. Am. A 16, 2413–2418 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited