OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 533–541

Importance of the phase and amplitude in the fractional Fourier domain

Tatiana Alieva and Maria Luisa Calvo  »View Author Affiliations


JOSA A, Vol. 20, Issue 3, pp. 533-541 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000533


View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The importance of the amplitude and phase in the fractional Fourier transform (FT) domain is analyzed on the basis of the rectangular signal and the real-world image. The quality of signal restoration from only the amplitude or from only the phase of its fractional FT by applying the inverse fractional FT is considered. It is shown that the signal reconstructed from the amplitude of the fractional FT usually reveals the main features of the original signal only for relatively low fractional orders. On the basis of phase information in the fractional FT domains, significant details of the signal can be obtained for nearly all fractional orders.

© 2003 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.3010) Image processing : Image reconstruction techniques
(100.5090) Image processing : Phase-only filters

History
Original Manuscript: June 14, 2002
Revised Manuscript: October 1, 2002
Manuscript Accepted: October 2, 2002
Published: March 1, 2003

Citation
Tatiana Alieva and Maria Luisa Calvo, "Importance of the phase and amplitude in the fractional Fourier domain," J. Opt. Soc. Am. A 20, 533-541 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  2. A. Vanderlugt, Optical Signal Processing (Wiley, New York, 1992).
  3. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE Press, Bellingham, Wash., 1989).
  4. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303–309 (1995). [CrossRef] [PubMed]
  5. D. Mendlovic, Y. Bitran, R. G. Dorsch, A. Lohmann, “Optical fractional correlation: experimental results,” J. Opt. Soc. Am. A 12, 1665–1670 (1995). [CrossRef]
  6. J. Garcı́a, D. Mendlovic, Z. Zalevsky, A. Lohmann, “Space variant simultaneous detection of several objects using multiple anamorphic fractional Fourier transform filters,” Appl. Opt. 35, 3945–3952 (1996). [CrossRef]
  7. J. Garcia, R. G. Dorsch, A. W. Lohmann, C. Ferreira, Z. Zalevsky, “Flexible optical implementation of fractional Fourier processors: application to correlation and filtering,” Opt. Commun. 133, 393–400 (1997). [CrossRef]
  8. O. Akay, G. F. Boudreaux-Bartels, “Fractional convolution and correlation via operator methods and an application to detection of linear FM signals,” IEEE Trans. Signal Process. 49, 979–993 (2001). [CrossRef]
  9. T. Alieva, M. L. Calvo, “Generalized fractional convolution,” in Perspectives in Modern Optics and Optical Instrumentation (Anita Publications, New Delhi, 2002), pp. 282–292.
  10. H. M. Ozaktas, Z. Zalevsky, M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001).
  11. A. Kozma, D. Kelly, “Spatial filtering for detection of signals submerged in noise,” Appl. Opt. 4, 387–392 (1965). [CrossRef]
  12. A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981). [CrossRef]
  13. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  14. A. W. Lohmann, D. Mendlovic, G. Shabtay, “Significance of phase and amplitude in the Fourier domain,” J. Opt. Soc. Am. A 14, 2901–2904 (1997). [CrossRef]
  15. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  16. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transformations and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  17. L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994). [CrossRef]
  18. T. Alieva, M. L. Calvo, M. J. Bastiaans, “Power filtering of n-order in the fractional Fourier domain,” J. Phys. A 35, 7779–7785 (2002). [CrossRef]
  19. M. Abramovich, I. A. Segun, Handbook of Mathematical Functions (Dover, New York, 1965).
  20. H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited