OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 557–568

Adaptive Hermite–Gauss decomposition method to analyze optical dielectric waveguides

Alejandro Ortega-Moñux, J. Gonzalo Wangüemert-Pérez, and Iñigo Molina-Fernández  »View Author Affiliations

JOSA A, Vol. 20, Issue 3, pp. 557-568 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel spectral method with variable transformation, the adaptive Hermite–Gauss decomposition method (A-HGDM), has been developed and applied to the analysis of three-dimensional (3D) dielectric structures. The proposed method includes an optimization strategy to automatically find the quasi-optimum numerical parameters of the variable transformation with low computational effort. The technique has been tested by analyzing two typical 3D dielectric structures: the rectangular step-index waveguide and the rib-waveguide directional coupler. In both cases, the A-HGDM increases the accuracy of the Hermite–Gauss decomposition method (HGDM), especially when the mode is near cutoff, and improves the computational efficiency of previously published optimization strategies (optimized HGDM).

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides

Original Manuscript: August 2, 2002
Revised Manuscript: October 7, 2002
Manuscript Accepted: October 9, 2002
Published: March 1, 2003

Alejandro Ortega-Moñux, J. Gonzalo Wangüemert-Pérez, and Iñigo Molina-Fernández, "Adaptive Hermite–Gauss decomposition method to analyze optical dielectric waveguides," J. Opt. Soc. Am. A 20, 557-568 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Henry, B. H. Verbeek, “Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” J. Lightwave Technol. 7, 308–313 (1989). [CrossRef]
  2. S. J. Hewlett, F. Ladouceur, “Fourier decomposition method applied to mapped infinite domains: scalar analysis of dielectric waveguides down to modal cutoff,” J. Lightwave Technol. 13, 375–383 (1995). [CrossRef]
  3. J. G. Wangüemert, I. Molina, “Analysis of dielectric waveguides by a modified Fourier decomposition method with adaptive mapping parameters,” J. Lightwave Technol. 19, 1614–1627 (2001). [CrossRef]
  4. I. Molina, J. G. Wangüemert, “Variable transformed series expansion approach for the analysis of nonlinear guided waves in planar dielectric waveguides,” J. Lightwave Technol. 16, 1354–1363 (1998). [CrossRef]
  5. R. Gallawa, C. Goyal, Y. Tu, K. Ghatak, “Optical waveguide modes: an approximate solution using Galerkin’s method with Hermite–Gauss basis functions,” IEEE J. Quantum Electron. 27, 518–522 (1991). [CrossRef]
  6. A. Weisshar, J. Li, R. L. Gallawa, I. C. Goyal, Y. Tu, K. Ghatak, “Vector and quasi-vector solutions for optical waveguide modes using efficient Galerkin’s method with Hermite–Gauss basis functions,” J. Lightwave Technol. 13, 1795–1800 (1995). [CrossRef]
  7. T. Rasmussen, J. H. Povlsen, A. Bjarklev, O. Lumholt, B. Pedersen, K. Rottwitt, “Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide,” J. Lightwave Technol. 11, 429–433 (1993). [CrossRef]
  8. J. P. Boyd, Chebyshev and Fourier Spectral Methods (Springer-Verlag, Berlin, 1989).
  9. J. G. Wangüemert, “Desarrollo y validación de métodos espectrales para el análisis y diseño de dispositivos ópticos lineales y no lineales,” Ph.D. thesis (Universidad de Málaga, Málaga, Spain, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited