Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temporal coupled-mode theory for the Fano resonance in optical resonators

Not Accessible

Your library or personal account may give you access

Abstract

We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure, Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analysis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function synthesis in filter and sensor applications.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting

Dmitry A. Bykov, Leonid L. Doskolovich, and Victor A. Soifer
Opt. Express 25(2) 1151-1164 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved