OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 3 — Mar. 1, 2003
  • pp: 573–576

Noncanonical vortex transformation and propagation in a two-dimensional optical system

Ravindra P. Singh and Sanjoy R. Chowdhury  »View Author Affiliations


JOSA A, Vol. 20, Issue 3, pp. 573-576 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000573


View Full Text Article

Enhanced HTML    Acrobat PDF (155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We produced an axial and canonical optical vortex by using a computer-generated hologram and then converted it to a noncanonical vortex by passing it through a cylindrical lens. We conducted an experimental study of the shape and trajectory of the noncanonical vortex as it propagates in free space and obtained an analytical expression explaining our experimental results. The computed trajectory and shape of the noncanonical vortex agree quite well with our experimental results.

© 2003 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.0260) Physical optics : Physical optics

History
Original Manuscript: June 15, 2002
Revised Manuscript: September 19, 2002
Manuscript Accepted: October 2, 2002
Published: March 1, 2003

Citation
Ravindra P. Singh and Sanjoy R. Chowdhury, "Noncanonical vortex transformation and propagation in a two-dimensional optical system," J. Opt. Soc. Am. A 20, 573-576 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-3-573


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. J. Padgett, M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, Vol. XXXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1999) pp. 291–372.
  2. M. Padgett, L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41, 275–285 (2000). [CrossRef]
  3. Y. S. Kivshar, A. Ostrovskaya, “Optical vortices: folding and twisting waves of light,” Opt. Photon. News, December2001 pp. 24–29.
  4. M. S. Soskin, M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. XLII, E. Wolf, ed. (North-Holland, Amsterdam, 2001), pp. 219–276.
  5. Y. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davies, L. M. Pismen, “Dynamics of optical vortex solitons,” Opt. Commun. 152, 198–206 (1998). [CrossRef]
  6. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  7. H. He, M. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  8. K. T. Gahagan, G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef] [PubMed]
  9. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997). [CrossRef] [PubMed]
  10. P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001). [CrossRef]
  11. A. Mair, A. Vaziri, G. Weighs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef] [PubMed]
  12. D. Rozas, C. T. Law, G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997). [CrossRef]
  13. G. Molina-Terriza, E. M. Wright, L. Torner, “Propagation and control of noncanonical optical vortices,” Opt. Lett. 26, 163–165 (2001). [CrossRef]
  14. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  15. J. F. Nye, M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974). [CrossRef]
  16. J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “The production of multiringed Laguerre–Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998). [CrossRef]
  17. H. He, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995). [CrossRef]
  18. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  19. M. Padgett, J. Arlt, N. Simpson, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996). [CrossRef]
  20. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  21. G. Nemes, A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994). [CrossRef]
  22. N. Hodgson, H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, London, 1997).
  23. J. A. Arnaud, “Hamiltonian theory of beam mode propagation,” in Progress in Optics, Vol. XI, E. Wolf, ed. (North-Holland, Amsterdam, 1973), pp. 247–304.
  24. G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, “Observation of the dynamical inversion of the topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902-1–4 (2001). [CrossRef]
  25. A. Ya. Beksaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002). [CrossRef]
  26. I. Freund, “Critical point explosions in two-dimensional wave fields,” Opt. Commun. 159, 99–117 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited