OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 621–630

Numerical evaluation of Hankel transforms for oscillating functions

Joanne Markham and José-Angel Conchello  »View Author Affiliations


JOSA A, Vol. 20, Issue 4, pp. 621-630 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000621


View Full Text Article

Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Six methods for the numerical calculation of zero-order Hankel transforms of oscillating functions were evaluated. One method based on Filon quadrature philosophy, two published projection-slice methods, and a third projection-slice method based on a new approach to computation of the Abel transform were implemented; alternative versions of two of the projection-slice methods were derived for more accurate approximations in the projection step. These six algorithms were tested with an oscillating sweep signal and with the calculation of a three-dimensional diffraction-limited point-spread function of a fluorescence microscope. We found that the Filon quadrature method is highly accurate but also computationally demanding. The projection-slice methods, in particular the new one that we derived, offer an excellent compromise between accuracy and computational efficiency.

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.3020) Image processing : Image reconstruction-restoration
(100.6890) Image processing : Three-dimensional image processing
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

Citation
Joanne Markham and José-Angel Conchello, "Numerical evaluation of Hankel transforms for oscillating functions," J. Opt. Soc. Am. A 20, 621-630 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-4-621


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. A. Conchello and Q. Yu, “Parametric blind deconvolution of fluorescence microscopy images: preliminary results,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. Kino, and T. Wilson, eds., Proc. SPIE 2655, 164–174 (1996).
  2. J. Markham and J. A. Conchello, “Parametric blind deconvolution of fluorescence microscopy images: further results,” in Three-Dimensional Microscopy: Image Acquisition and Processing V, C. J. Cogswell, J. A. Conchello, and T. Wilson, eds., Proc. SPIE 3261, 38–49 (1998).
  3. J. Markham and J. A. Conchello, “Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur,” J. Opt. Soc. Am. A 16, 2377–2391 (1999).
  4. T. J. Holmes, “Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach,” J. Opt. Soc. Am. A 9, 1052–1061 (1992).
  5. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992).
  6. R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A 9, 1508–1514 (1992).
  7. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993).
  8. Y. Yang, N. P. Galastanos, and H. Stark, “Projection-based blind deconvolution,” J. Opt. Soc. Am. A 11, 2401–2409 (1994).
  9. V. Krishnamurthi, Y-H. Liu, S. Bhattacharyya, J. N. Turner, and T. J. Holmes, “Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation,” Appl. Opt. 34, 6633–6647 (1995).
  10. E. Thiébaut and J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995).
  11. S. Bhattacharyya, D. H. Szarowski, J. N. Turner, N. O’Connor, and T. J. Holmes, “ML-EM blind deconvolution algorithm: recent developments,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. Kino, and T. Wilson, eds., Proc. SPIE 2655, 175–186 (1996).
  12. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, New York, 1980).
  13. A. E. Siegman, “Quasi fast Hankel transform,” Opt. Lett. 1, 13–15 (1977).
  14. M. J. Cree and P. J. Bones, “Algorithms to numerically evaluate the Hankel transform,” Comput. Math. Appl. 26, 1–12 (1993).
  15. B. W. Suter, “Foundations of Hankel transform algorithms,” Q. Appl. Math. 49, 267–279 (1991).
  16. R. Barakat and E. Parshall, “Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy,” Appl. Math. Lett. 9, 21–26 (1996).
  17. R. Barakat, E. Parshall, and B. H. Sandler, “Zero-order Hankel transformation algorithms based on Filon quadrature philosophy for diffraction optics and beam propagation,” J. Opt. Soc. Am. A 15, 652–659 (1998).
  18. V. Magni, G. Cerullo, and S. De Silvestri, “High-accuracy fast Hankel transform for optical beam propagation,” J. Opt. Soc. Am. A 9, 2031–2033 (1992).
  19. A. Agnesi, G. C. Reali, G. Patrini, and A. Tomaselli, “Numerical evaluation of the Hankel transform: remarks,” J. Opt. Soc. Am. A 10, 1872–1874 (1993).
  20. Q. H. Liu and Z. Q. Zhang, “Nonuniform fast Hankel transform (NUFHT) algorithm,” Appl. Opt. 38, 6705–6708 (1999).
  21. Q. H. Liu and N. Nguyen, “An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s),” IEEE Microwave Guid. Wave Lett. 8, 18–20 (1998).
  22. Q. H. Liu and X. Y. Tang, “Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT),” Electron. Lett. 34, 1913–1914 (1998).
  23. A. V. Oppenheim, G. V. Frisk, and D. R. Martinez, “Computation of the Hankel transform using projections,” J. Acoust. Soc. Am. 68, 523–529 (1980).
  24. A. V. Oppenheim, G. V. Frisk, and D. R. Martinez, “An algorithm for the numerical evaluation of the Hankel transform,” Proc. IEEE 66, 264–265 (1978).
  25. D. R. Mook, “An algorithm for the numerical calculation of Hankel and Abel transforms,” IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 979–985 (1983).
  26. E. W. Hansen, “Fast Hankel transform algorithm,” IEEE Trans. Acoust. Speech Signal Process. ASSP-33, 666–671 (1985).
  27. E. W. Hansen, “Correction to ‘Fast Hankel transform algorithm’,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 623–624 (1986).
  28. E. W. Hansen and P-L. Law, “Recursive methods for computing the Abel transform and its inverse,” J. Opt. Soc. Am. A 2, 510–520 (1985).
  29. B. W. Suter, “Fast nth-order Hankel transform algorithm,” IEEE Trans. Signal Process. 39, 532–536 (1991).
  30. J. A. Ferrari, “Fast Hankel transform of order zero,” J. Opt. Soc. Am. A 12, 1812–1813 (1995).
  31. J. A. Ferrari, D. Perciante, and A. Dubra, “Fast Hankel transform of nth order,” J. Opt. Soc. Am. A 16, 2581–2582 (1999).
  32. B. W. Suter and R. A. Hedges, “Understanding fast Hankel transforms,” J. Opt. Soc. Am. A 18, 717–720 (2001).
  33. L. Knockaert, “Fast Hankel transform by fast sine and cosine transforms: the Mellin connection,” IEEE Trans. Signal Process. 48, 1695–1701 (2000).
  34. R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, Boston, 2000), pp. 351–356.
  35. The netlib routines are available at http://www.netlib.org.
  36. F. S. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8, 1601–1613 (1991).
  37. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972), Chap. 12.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited