OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 638–643

Talbot conditions, Talbot resonators, and first-order systems

Carlos R. Fernández-Pousa, María Teresa Flores-Arias, Carmen Bao, María Victoria Pérez, and Carlos Gómez-Reino  »View Author Affiliations


JOSA A, Vol. 20, Issue 4, pp. 638-643 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000638


View Full Text Article

Acrobat PDF (267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A study of first-order Talbot resonators is presented. The general conditions for Talbot effect in <i>ABCD</i> systems are determined. These conditions are applied to the computation of the diffraction overlapping coefficients between array Gaussian emitters in a general first-order Talbot resonator. Relations on the ray-transfer matrix to generate the symmetric and the totally antisymmetric supermodes of the array are derived. These relations generalize the free-space, round-trip lengths of 1/2 and 1/4 of the Talbot distance. A new type of resonator based on a plano–convex gradient-index rod is proposed.

© 2003 Optical Society of America

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(110.0110) Imaging systems : Imaging systems
(140.3410) Lasers and laser optics : Laser resonators
(230.5750) Optical devices : Resonators

Citation
Carlos R. Fernández-Pousa, María Teresa Flores-Arias, Carmen Bao, María Victoria Pérez, and Carlos Gómez-Reino, "Talbot conditions, Talbot resonators, and first-order systems," J. Opt. Soc. Am. A 20, 638-643 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-4-638


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Wang, J. Z. Wilcox, M. Jansen, and J. J. Yang, “In-phase locking in diffraction-coupled phased-array diode lasers,” Appl. Phys. Lett. 48, 1770–1772 (1986).
  2. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
  3. F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816–818 (1989).
  4. A. M. Hornby, H. J. Baker, R. J. Morley, and D. R. Hall, “Phase locking of linear arrays of CO2 waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett. 63, 2591–2593 (1993).
  5. Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36, 607–614 (2000).
  6. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett. 25, 1436–1438 (2000).
  7. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
  8. D. Mehuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
  9. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823–825 (1991).
  10. P. Peterson, A. Gavrielides, and M. P. Sharma, “Extraction characteristics of a one-dimensional Talbot cavity with stochastic propagation phase,” Opt. Express 8, 670–681 (2001); http://www.osa.org/opticsexpress.
  11. J. R. Leger, G. Mowry, and Xu Li, “Modal properties of an external diode-laser-array cavity with diffractive mode-selecting mirrors,” Appl. Phys. Lett. 34, 4302–4310 (1995).
  12. M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. R. Fernández-Pousa, “Fractional Talbot effect in a Selfoc gradient-index lens,” Opt. Lett. 27, 2064–2066 (2002).
  13. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
  14. C. Gómez-Reino, M. V. Pérez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer-Verlag, Berlin 2002), Chap. 7.
  15. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effect,” J. Mod. Opt. 43, 2139–2164 (1996).
  16. T. Alieva and F. Agulló-López, “Imaging in first-order optical systems,” J. Opt. Soc. Am. A 13, 2375–2380 (1996).
  17. L. M. Bernardo, “Talbot self-imaging in fractional Fourier planes of real and complex orders,” Opt. Commun. 140, 195–198 (1997).
  18. A. W. Lohman, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
  19. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited