OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 4 — Apr. 1, 2003
  • pp: 714–727

Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues

Johannes Swartling, Antonio Pifferi, Annika M. K. Enejder, and Stefan Andersson-Engels  »View Author Affiliations


JOSA A, Vol. 20, Issue 4, pp. 714-727 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000714


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two efficient Monte Carlo models are described, facilitating predictions of complete time-resolved fluorescence spectra from a light-scattering and light-absorbing medium. These are compared with a third, conventional fluorescence Monte Carlo model in terms of accuracy, signal-to-noise statistics, and simulation time. The improved computation efficiency is achieved by means of a convolution technique, justified by the symmetry of the problem. Furthermore, the reciprocity principle for photon paths, employed in one of the accelerated models, is shown to simplify the computations of the distribution of the emitted fluorescence drastically. A so-called white Monte Carlo approach is finally suggested for efficient simulations of one excitation wavelength combined with a wide range of emission wavelengths. The fluorescence is simulated in a purely scattering medium, and the absorption properties are instead taken into account analytically afterward. This approach is applicable to the conventional model as well as to the two accelerated models. Essentially the same absolute values for the fluorescence integrated over the emitting surface and time are obtained for the three models within the accuracy of the simulations. The time-resolved and spatially resolved fluorescence exhibits a slight overestimation at short delay times close to the source corresponding to approximately two grid elements for the accelerated models, as a result of the discretization and the convolution. The improved efficiency is most prominent for the reverse-emission accelerated model, for which the simulation time can be reduced by up to two orders of magnitude.

© 2003 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.7050) Medical optics and biotechnology : Turbid media
(300.6170) Spectroscopy : Spectra

History
Original Manuscript: May 22, 2002
Revised Manuscript: October 1, 2002
Manuscript Accepted: October 1, 2002
Published: April 1, 2003

Citation
Johannes Swartling, Antonio Pifferi, Annika M. K. Enejder, and Stefan Andersson-Engels, "Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues," J. Opt. Soc. Am. A 20, 714-727 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-4-714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997). [CrossRef] [PubMed]
  2. G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998). [CrossRef]
  3. N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, B. Chance, “Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner,” IEEE Trans. Biomed. Eng. 48, 1034–1041 (2001). [CrossRef] [PubMed]
  4. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997). [CrossRef] [PubMed]
  5. J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27, 364–371 (2001). [CrossRef] [PubMed]
  6. R. Weissleder, C.-H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999). [CrossRef] [PubMed]
  7. M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source-detector separation,” Appl. Opt. 39, 6508–6514 (2000). [CrossRef]
  8. M. Sinaasappel, H. J. C. M. Sterenborg, “Quantification of the hematoporphyrin derivative by fluorescence measurement using dual-wavelength excitation and dual-wavelength detection,” Appl. Opt. 32, 541–548 (1993). [CrossRef] [PubMed]
  9. H. J. C. M. Sterenborg, A. E. Saarnak, R. Frank, M. Motamedi, “Evaluation of spectral correction techniques for fluorescence measurements on pigmented lesions in vivo,” J. Photochem. Photobiol. B 35, 159–165 (1996). [CrossRef] [PubMed]
  10. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  11. S. Warren, K. Pope, Y. Yazdi, A. J. Welch, S. Thomsen, A. L. Johnston, M. J. Davis, R. Richards-Kortum, “Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis,” IEEE Trans. Biomed. Eng. 42, 121–132 (1995). [CrossRef] [PubMed]
  12. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996). [CrossRef] [PubMed]
  13. M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001). [CrossRef]
  14. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995). [CrossRef] [PubMed]
  15. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  16. R. Richards-Kortum, R. P. Rava, R. Cothren, A. Metha, M. Fitzmaurice, N. B. Ratliff, J. R. Kramers, C. Kittrell, M. S. Feld, “A model for extraction of diagnostic information from laser induced fluorescence spectra of human artery wall,” Spectrochim. Acta Part A 45, 87–93 (1989). [CrossRef]
  17. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Effects of multiple-passage probabilities on fluorescent signals from biological media,” Appl. Opt. 36, 4613–4619 (1997). [CrossRef] [PubMed]
  18. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distribution in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989). [CrossRef]
  19. C. M. Gardner, A. J. Welch, “Monte Carlo simulation of light transport in tissue: unscattered absorption events,” Appl. Opt. 33, 2743–2745 (1994). [CrossRef] [PubMed]
  20. A. J. Welch, R Richards-Kortum, “Monte Carlo simulation of the propagation of fluorescent light,” in Laser-induced Interstitial Thermotherapy, G. Müller, A. Roggan, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1995), pp. 174–189.
  21. A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescence light,” Lasers Surg. Med. 21, 166–178 (1997). [CrossRef]
  22. R. J. Crilly, W. F. Cheong, B. Wilson, J. R. Spears, “Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation,” Appl. Opt. 36, 6513–6519 (1997). [CrossRef]
  23. S. Avrillier, E. Tinet, D. Ettori, J.-M. Tualle, B. Gélébart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998). [CrossRef]
  24. A Pifferi, R Berg, P Taroni, S Andersson-Engels, “Fitting of time-resolved reflectance curves with a Monte Carlo model,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 311–314.
  25. A. Kienle, M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996). [CrossRef] [PubMed]
  26. A. Pifferi, P. Taroni, G. Valentini, S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780 (1998). [CrossRef]
  27. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  28. S. Andersson-Engels, A. M. K. Enejder, J. Swartling, A. Pifferi, “Accelerated Monte Carlo models to simulate fluorescence of layered tissue,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 14–15 (2000). [CrossRef]
  29. K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967).
  30. H. R. Gordon, “Equivalence of the point and beam spread functions of scattering media: a formal demonstration,” Appl. Opt. 33, 1120–1122 (1994). [CrossRef] [PubMed]
  31. R Berg, “Laser-based cancer diagnostics and therapy—tissue optics considerations,” Ph.D. thesis (Lund Institute of Technology, Lund, Sweden, 1995).
  32. A. J. Welch, M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
  33. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995). [CrossRef] [PubMed]
  34. P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, “Optical monitoring of volcanic sulphur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Opt. Lasers Eng. 37, 267–284 (2002). [CrossRef]
  35. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited