OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 836–843

Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount

Ian R. Hooper and J. R. Sambles  »View Author Affiliations


JOSA A, Vol. 20, Issue 5, pp. 836-843 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000836


View Full Text Article

Enhanced HTML    Acrobat PDF (1080 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent investigations into high-aspect-ratio short-pitch metal grating structures have shown that it is possible to excite surface plasmon polaritons (SPPs) even in the zero-order region of the spectrum. The predominant reason this is possible is that extremely large bandgaps occur in the SPP dispersion curves, which are caused by the large depths, and heights, of the structures. The form of the resultant dispersion curves has also been found to be highly dependent on the shape of the grating profile. We present an extension to a previously published paper that described the nature of the SPPs excited on narrow-ridged short-pitch metal gratings in the classical mount by considering the case in which the radiation is incident at nonzero azimuthal angles (the conical mount). In particular, we consider the case of 90° and 45° azimuthal angles and discuss the coupling to the SPP modes and the way in which polarization conversion is evident on such structures.

© 2003 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings

History
Original Manuscript: September 16, 2002
Revised Manuscript: December 2, 2002
Manuscript Accepted: December 2, 2002
Published: May 1, 2003

Citation
Ian R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount," J. Opt. Soc. Am. A 20, 836-843 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-5-836


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).
  2. T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998). [CrossRef]
  3. F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999). [CrossRef]
  4. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998). [CrossRef]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  7. L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001). [CrossRef] [PubMed]
  8. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  9. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998). [CrossRef]
  10. W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999). [CrossRef]
  11. I. R. Hooper, J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002). [CrossRef]
  12. I. R. Hooper, J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002). [CrossRef]
  13. I. R. Hooper, J. R. Sambles, “A broadband polarization converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152–2154 (2002). [CrossRef]
  14. N. P. K. Cotter, T. W. Preist, J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995). [CrossRef]
  15. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings—a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  16. R. A. Watts, T. W. Preist, J. R. Sambles, “Sharp surface-plasmon resonances on deep diffraction gratings,” Phys. Rev. Lett. 79, 3978–3981 (1997). [CrossRef]
  17. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996). [CrossRef]
  18. S. J. Elston, G. P. Bryan-Brown, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991). [CrossRef]
  19. R. A. Depine, M. Lester, “Internal symmetries in conical diffraction from metallic gratings,” J. Mod. Opt. 48, 1405–1411 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited