## Parallel implementation of the biorthogonal multiresolution time-domain method

JOSA A, Vol. 20, Issue 5, pp. 844-855 (2003)

http://dx.doi.org/10.1364/JOSAA.20.000844

Enhanced HTML Acrobat PDF (942 KB)

### Abstract

The three-dimensional biorthogonal multiresolution time-domain (Bi-MRTD) method is presented for both free-space and half-space scattering problems. The perfectly matched layer (PML) is used as an absorbing boundary condition. It has been shown that improved numerical-dispersion properties can be obtained with the use of smooth, compactly supported wavelet functions as the basis, whereas we employ the Cohen–Daubechies–Fouveau (CDF) biorthogonal wavelets. When a CDF-wavelet expansion is used, the spatial-sampling rate can be reduced considerably compared with that of the conventional finite-difference time-domain (FDTD) method, implying that larger targets can be simulated without sacrificing accuracy. We implement the Bi-MRTD on a cluster of allocated-memory machines, using the message-passing interface (MPI), such that very large targets can be modeled. Numerical results are compared with analytical ones and with those obtained by use of the traditional FDTD method.

© 2003 Optical Society of America

**OCIS Codes**

(290.4210) Scattering : Multiple scattering

(290.5880) Scattering : Scattering, rough surfaces

**History**

Original Manuscript: October 16, 2002

Manuscript Accepted: December 18, 2002

Published: May 1, 2003

**Citation**

Xianyang Zhu, Lawrence Carin, and Traian Dogaru, "Parallel implementation of the biorthogonal multiresolution time-domain method," J. Opt. Soc. Am. A **20**, 844-855 (2003)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-5-844

Sort: Year | Journal | Reset

### References

- A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
- A. Taflove, ed., Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1998).
- G. S. Smith, W. R. Scott, “A scale model for studying ground penetrating radars,” IEEE Trans. Geosci. Remote Sens. 27, 358–363 (1989). [CrossRef]
- J. M. Bourgeois, G. S. Smith, “A fully three-dimensional simulation of ground penetrating radar: FDTD theory compared with experiment,” IEEE Trans. Geosci. Remote Sens. 34, 36–44 (1996). [CrossRef]
- C. T. Schroder, W. R. Scott, “A finite-difference model to study the elastic-wave interactions with buried land mines,” IEEE Trans. Geosci. Remote Sens. 38, 1505–1512 (2000). [CrossRef]
- S. B. Kumar, C. K. Aanandan, K. T. Mathew, “Buried-object detection using free-space time-domain near-field measurements,” Microwave Opt. Technol. Lett. 30, 45–47 (2001). [CrossRef]
- P. B. Johns, K. Akhtarzad, “Time domain approximations in the solution of fields by time domain diakoptics,” Int. J. Numer. Methods Eng. 18, 1361–1373 (1982). [CrossRef]
- D. Su, J. Park, Y. Qian, B. Houshmand, T. Itoh, “Waveguide bandpass filter analysis and design using multimode parallel FDTD diakoptics,” IEEE Trans. Microwave Theory Tech. 47, 867–876 (1999). [CrossRef]
- S. D. Gedney, “Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers,” IEEE Trans. Microwave Theory Tech. 43, 2510–2514 (1995). [CrossRef]
- W. J. Buchanan, N. K. Gupta, “A novel parallel processoring synchronization method for observing electric fields in and around PCBs,” Int. J. Electron. 82, 61–76 (1997). [CrossRef]
- M. A. Alsunaidi, S. M. Hammadi, S. M. El-Ghazaly, “A parallel implementation of a two-dimensional hydrodynamic model for microwave semiconductor device including inertia effects in momentum relaxation,” Int. J. Numer. Model. Electron. Network Devices Fields 10, 107–119 (1997).
- Z. M. Liu, A. S. Mohan, T. A. Aubrey, W. R. Belcher, “Techniques for implementation of the FDTD method on a CM-5 parallel computer,” IEEE Antennas Propag. Mag. 37, 64–71 (1995). [CrossRef]
- K. C. Chew, V. F. Fusco, “A parallel implementation of the finite-difference time-domain algorithm,” Int. J. Numer. Model. Electron. Networks Devices and Fields 8, 293–299 (1995).
- C. Guiffaut, K. Mahdjoubi, “A parallel FDTD algorithm using the MPI library,” IEEE Antennas Propag. Mag. 43, 94–103 (2001). [CrossRef]
- G. A. Geist, M. T. Heath, B. W. Peyton, P. H. Worley, “PICL: a portable instrumented communications library, C reference manual,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1990).
- A. Beguelin, J. Dongarra, G. A. Geist, R. Manchek, V. Sunderam, “A user’s guide to PVM: parallel virtual machine,” (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1991).
- W. Gropp, E. Lusk, A. Skjellum, Using MPI. Portable Parallel Programming with the Message Passing Interface (MIT Press, Boston, Mass., 1994).
- T. Dogaru, L. Carin, “Multiresolution time-domain using biorthogonal wavelets,” IEEE Trans. Microwave Theory Tech. 49, 902–912 (2001). [CrossRef]
- X. Zhu, T. Dogaru, L. Carin, “Three-dimensional biorthogonal multi-resolution time-domain method and its application to electromagnetic scattering problems,” IEEE Trans. Antennas Propag. (to be published).
- M. Krumpholz, L. P. B. Katehi, “MRTD: New time domain schemes based on multiresolution analysis,” IEEE Trans. Microwave Theory Tech. 44, 555–561 (1996). [CrossRef]
- E. Tentzeris, R. Robertson, J. Harvey, L. P. B. Katehi, “Stability and dispersion analysis of Battle-Lemarie based MRTD schemes,” IEEE Trans. Microwave Theory Tech. 47, 1004–1013 (1999). [CrossRef]
- R. L. Robertson, E. Tentzeris, L. P. B. Katehi, “Modeling of dielectric-loaded cavities using MRTD,” Int. J. Numer. Model. Electron. Netw. Devices Fields 11, 55–68 (1998). [CrossRef]
- E. M. Tentzeris, A. Cangellaris, L. P. B. Katehi, “Multiresolution time-domain (MRTD) adaptive schemes using arbitrary resolutions of wavelets,” IEEE Trans. Microwave Theory Tech. 50, 501–516 (2002). [CrossRef]
- T. Dogaru, L. Carin, “Multiresolution time-domain analysis of scattering from a rough dielectric surface,” Radio Sci. 35, 1279–1292 (2000). [CrossRef]
- X. Zhu, L. Carin, “Multi-resolution time-domain analysis of plane-wave scattering from general three-dimensional surface and subsurface dielectric targets,” IEEE Trans. Antennas Propag. 49, 1568–1578 (2001). [CrossRef]
- I. Daubechies, Ten Lectures on Wavelets (SIAM ReviewPhiladelphia, Pa., 1992).
- Y. W. Cheong, Y. M. Lee, K. H. Ra, J. G. Kang, C. C. Shin, “Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems,” IEEE Microwave Guid. Wave Lett. 9, 297–299 (1999). [CrossRef]
- M. Fujii, W. J. R. Hoefer, “Dispersion of time domain wavelet Galerkin method based on Daubechies’ compactly supported scaling functions with three and four vanishing moments,” IEEE Microwave Guid. Wave Lett. 10, 125–127 (2000). [CrossRef]
- S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
- E. M. Tentzeris, R. L. Robertson, J. F. Harvey, L. P. B. Katehi, “PML absorbing boundary conditions for the characterization of open microwave circuit components using multiresolution time-domain techniques (MRTD),” IEEE Trans. Antennas Propag. 47, 1709–1715 (1999). [CrossRef]
- T. Dogaru, L. Carin, “Application of Haar-wavelet based multi-resolution time-domain schemes to electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 50, 774–784 (2002). [CrossRef]
- P. Hubral, M. Tygel, “Analysis of the Rayleigh pulse,” Geophysics 54, 654–658 (1989). [CrossRef]
- C. A. Balanis, Engineering Electromagnetics (Wiley, New York, 1989).
- L. Carin, L. B. Felsen, “Time-harmonic and transient scattering by finite periodic flat strip arrays: hybrid (ray)-(floquet Mode)-(MOM) algorithm and its GTD interpretation,” IEEE Trans. Antennas Propag. 41, 412–421 (1993). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.