OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 856–866

Atmospheric optical communication with a Gaussian Schell beam

Jennifer C. Ricklin and Frederic M. Davidson  »View Author Affiliations

JOSA A, Vol. 20, Issue 5, pp. 856-866 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider a wireless optical communication link in which the laser source is a Gaussian Schell beam. The effects of atmospheric turbulence strength and degree of source spatial coherence on aperture averaging and average bit error rate are examined. To accomplish this, we have derived analytic expressions for the spatial covariance of irradiance fluctuations and log-intensity variance for a Gaussian beam of any degree of coherence in the weak fluctuation regime. When spatial coherence of the transmitted source beam is reduced, intensity fluctuations (scintillations) decrease, leading to a significant reduction in the bit error rate of the optical communication link. We have also identified an enhanced aperture-averaging effect that occurs in tightly focused coherent Gaussian beams and in collimated and slightly divergent partially coherent beams. The expressions derived provide a useful design tool for selecting the optimal transmitter beam size, receiver aperture size, beam spatial coherence, transmitter focusing, etc., for the anticipated atmospheric channel conditions.

© 2003 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.7060) Atmospheric and oceanic optics : Turbulence
(030.1640) Coherence and statistical optics : Coherence
(060.4510) Fiber optics and optical communications : Optical communications

Original Manuscript: July 24, 2002
Revised Manuscript: November 8, 2002
Manuscript Accepted: November 8, 2002
Published: May 1, 2003

Jennifer C. Ricklin and Frederic M. Davidson, "Atmospheric optical communication with a Gaussian Schell beam," J. Opt. Soc. Am. A 20, 856-866 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Schell, “The multiple plate antenna,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1961).
  2. J. C. Ricklin, F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  3. V. A. Banach, V. M. Buldakov, V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spektrosk. 54, 1054–1059 (1983).
  4. J. C. Ricklin, F. D. Davidson, T. Weyrauch, “Free-space laser communication using a partially coherent source,” in Optics in Atmospheric Propagation and Adaptive Systems IV, A. Kohnle, J. D. Gonglewski, T. J. Schmugge, eds., Proc. SPIE4538, 13–23 (2001). [CrossRef]
  5. V. I. Polejaev, J. C. Ricklin, “Controlled phase diffuser for a laser communication link,” in Artificial Turbulence for Imaging and Wave Propagation, J. D. Gonglewski, M. A. Vorontsov, eds., Proc. SPIE3432, 103–107 (1998). [CrossRef]
  6. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991). [CrossRef] [PubMed]
  7. F. M. Davidson, X. Sun, “Gaussian approximation versus nearly exact performance analysis of optical communication receivers,” IEEE Trans. Commun. 36, 1185–1192 (1988). [CrossRef]
  8. D. L. Snyder, Random Point Processes (Wiley Interscience, New York, 1975).
  9. R. M. Gagliardi, S. Karp, Optical Communications (Wiley Interscience, New York, 1995).
  10. R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes,” IEEE Trans. Electron Devices 19, 703–713 (1972). [CrossRef]
  11. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  12. J. H. Churnside, C. M. McIntyre, “Averaged threshold receiver for direct detection of optical communications through the lognormal atmospheric channel,” Appl. Opt. 16, 2669–2676 (1977). [CrossRef] [PubMed]
  13. J. H. Churnside, R. J. Hill, “Probability density of irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727–733 (1987). [CrossRef]
  14. J. H. Churnside, S. F. Clifford, “Log-normal Rician probability-density function of optical scintillations in the turbulent atmosphere,” J. Opt. Soc. Am. A 4, 1923–1930 (1987). [CrossRef]
  15. S. M. Flatte, C. Bracher, G. Wang, “Probability density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994). [CrossRef]
  16. R. J. Hill, R. G. Frehlich, “Probability distribution of irradiance for the onset of strong scintillation,” J. Opt. Soc. Am. A 14, 1530–1540 (1997). [CrossRef]
  17. D. L. Fried, G. E. Meyers, M. P. Keister, “Measurements of laser-beam scintillation in the atmosphere,” J. Opt. Soc. Am. 57, 787–797 (1967). [CrossRef]
  18. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).
  19. H. Mikesell, A. A. Hoag, J. S. Hall, “The scintillation of starlight,” J. Opt. Soc. Am. 41, 689–695 (1951). [CrossRef]
  20. S. H. Reiger, “Starlight scintillation and atmospheric turbulence,” Astron. J. 68, 395–406 (1963). [CrossRef]
  21. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57, 169–175 (1967). [CrossRef]
  22. G. E. Homstad, J. W. Strohbehn, R. H. Berger, J. M. Heneghan, “Aperture-averaging effects for weak scintillations,” J. Opt. Soc. Am. 64, 162–165 (1974). [CrossRef]
  23. R. S. Iyer, J. L. Bufton, “Aperture averaging effects in stellar scintillation,” Opt. Commun. 22, 377–381 (1977). [CrossRef]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  25. R. Lutomirski, H. T. Yura, “Propagation of a finite opti-cal beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef] [PubMed]
  26. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  27. H. T. Yura, “Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium,” Appl. Opt. 11, 1399–1406 (1972). [CrossRef] [PubMed]
  28. R. I. Joseph, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (personal communication, 2001).
  29. S. J. Wang, Y. Baykal, M. A. Plonus, “Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere,” J. Opt. Soc. Am. 73, 831–837 (1983). [CrossRef]
  30. D. L. Fried, J. B. Seidman, “Laser beam scintillation in the atmosphere,” J. Opt. Soc. Am. 57, 181–185 (1967). [CrossRef]
  31. A. Ishimaru, “Fluctuations of a beam wave propagating through a locally homogeneous medium,” Radio Sci. 4, 295–305 (1969). [CrossRef]
  32. F. P. Carlson, “Application of optical scintillation measurements to turbulence diagnostics,” J. Opt. Soc. Am. 59, 1343–1347 (1969). [CrossRef]
  33. J. R. Kerr, R. Eiss, “Transmitter-size and focus effects on scintillations,” J. Opt. Soc. Am. 62, 682–684 (1972). [CrossRef]
  34. W. B. Miller, J. C. Ricklin, L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A 10, 661–672 (1993). [CrossRef]
  35. L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, Bellingham, Wash., 1998).
  36. W. Gander, W. Gautschi, “Adaptive quadrature—revisited,” Department Informatik Institut für Wissenschaftliches Rechnen, Eidgenüssische Technische Hochschule Zurich. Report available via anonymous ftp from ftp.inf.ethz.chasdoc/tech-rteports/1998/306.ps.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited