OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 948–954

Triply periodic bicontinuous structures through interference lithography: a level-set approach

Chaitanya K. Ullal, Martin Maldovan, Meinhard Wohlgemuth, Edwin L. Thomas, Christopher A. White, and Shu Yang  »View Author Affiliations


JOSA A, Vol. 20, Issue 5, pp. 948-954 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000948


View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interference lithography holds the promise of fabricating large-area, defect-free photonic structures on the submicrometer scale both rapidly and cheaply. There is a need for a procedure to establish a connection between the structures that are formed and the parameters of the interfering beams. There is also a need to produce self-supporting three-dimensional bicontinuous structures. A generic technique correlating parameters of the interfering beams with the symmetry elements present in the resultant structures by a level-set approach is developed. A particular space group is ensured by equating terms of the intensity equation to a representative level surface of the desired space group. Single- and multiple-exposure techniques are discussed. The beam parameters for certain cubic bicontinuous structures relevant to photonic crystals, viz., the diamond (D), the simple cubic (P), and the chiral gyroid (G) are derived by utilizing either linear or elliptically polarized light.

© 2003 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

History
Original Manuscript: October 30, 2002
Revised Manuscript: January 6, 2003
Manuscript Accepted: January 6, 2003
Published: May 1, 2003

Citation
Chaitanya K. Ullal, Martin Maldovan, Meinhard Wohlgemuth, Edwin L. Thomas, Christopher A. White, and Shu Yang, "Triply periodic bicontinuous structures through interference lithography: a level-set approach," J. Opt. Soc. Am. A 20, 948-954 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-5-948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, E. L. Thomas, “Photonic properties of bicontinuous cubic microphases,” Phys. Rev. B 65, 165123:1–165123:5 (2002). [CrossRef]
  2. J. C. Shah, Y. Sadhale, D. M. Chilukuri, “Cubic phase gels as drug delivery systems,” Adv. Drug Deliver. Rev. 47, 229–250 (2001). [CrossRef]
  3. E. L. Thomas, D. B. Alward, D. J. Kinning, D. C. Martin, D. L. Handlin, L. J. Fetters, “Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology,” Macromolecules 19, 2197–2202 (1986). [CrossRef]
  4. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998). [CrossRef]
  5. P. Alexandridis, U. Olsson, B. Lindman, “A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil),” Langmuir 14, 2627–2638 (1998). [CrossRef]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000). [CrossRef] [PubMed]
  7. A. J. Turberfield, “Photonic crystals made by holographic lithography,” MRS Bull. 26, 632–636 (2001). [CrossRef]
  8. L. Z. Cai, X. L. Yang, Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002). [CrossRef]
  9. M. Buerger, Elementary Crystallography (MIT, Cambridge, Mass., 1978).
  10. K. I. Petsas, A. B. Coates, G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994). [CrossRef] [PubMed]
  11. L. Z. Cai, X. L. Yang, Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19, 2238–2244 (2002). [CrossRef]
  12. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002). [CrossRef]
  13. A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A Pure Appl. Opt. 1, L3–L6 (1999). [CrossRef]
  14. U. Shmueli, ed., Reciprocal Space, Vol. B of International Tables for Crystallography (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  15. Structures without a center of inversion are achieved by use of elliptically polarized light.
  16. M. Wohlgemuth, N. Yufa, J. Hoffman, E. L. Thomas, “Triply periodic bicontinuous cubic microdomain morphologies by symmetries,” Macromolecules 34, 6083–6089 (2001). [CrossRef]
  17. D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Photonic crystals for the visible spectrum by holographic lithography,” Opt. Quantum Electron. 34, 3–12 (2002). [CrossRef]
  18. R. Sutherland, V. Tondiglia, L. Natarajan, S. Chandra, D. Tomlin, T. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited