OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 1103–1110

Iterative boundary method for diffuse optical tomography

Jorge Ripoll and Vasilis Ntziachristos  »View Author Affiliations


JOSA A, Vol. 20, Issue 6, pp. 1103-1110 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001103


View Full Text Article

Acrobat PDF (893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The recent application of tomographic methods to three-dimensional imaging through tissue by use of light often requires modeling of geometrically complex diffuse–nondiffuse boundaries at the tissue–air interface. We have recently investigated analytical methods to model complex boundaries by means of the Kirchhoff approximation. We generalize this approach using an analytical approximation, the N-order diffuse-reflection boundary method, which considers higher orders of interaction between surface elements in an iterative manner. We present the general performance of the method and demonstrate that it can improve the accuracy in modeling complex boundaries compared with the Kirchhoff approximation in the cases of small diffuse volumes or low absorption. Our observations are also contrasted with exact solutions. We furthermore investigate optimal implementation parameters and show that a second-order approximation is appropriate for most in vivo investigations.

© 2003 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5270) Medical optics and biotechnology : Photon density waves
(170.5280) Medical optics and biotechnology : Photon migration

Citation
Jorge Ripoll and Vasilis Ntziachristos, "Iterative boundary method for diffuse optical tomography," J. Opt. Soc. Am. A 20, 1103-1110 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-6-1103


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
  2. S. K. Gayen and R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News, March 1996, pp. 16–22.
  3. E. B. Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
  4. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. U.S.A. 94, 6468–6473 (1997).
  5. V. Ntziachristos, X. H. Ma, and B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
  6. D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, and P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
  7. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).
  8. V. Ntziachristos and B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–46 (2001).
  9. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nature Med. 8, 757–760 (2002).
  10. V. Ntziachristos, J. Ripoll, and R. Weissleder, “Would near-infrared fluorescence signals propagate through large human organs for clinical studies?” Opt. Lett. 27, 333–335 (2002).
  11. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
  12. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  13. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiography 218, 261–266 (2001).
  14. V. Ntziachristos, “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance of breast cancer,” Ph.D. dissertation (University of Philadelphia, Philadelphia, Pa., 2000).
  15. A. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, and M. Kohl, eds., Proc. SPIE 3566, 151–160 (1998).
  16. Y. Xu, N. Iftimia, H. Jiang, L. L. Key, and M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Optics Express 8, 447–451 (2001).
  17. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000).
  18. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
  19. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imag. 1, 82–88 (2002).
  20. S. R. Arridge, “Photon measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
  21. G. Beer and J. O. Watson, Introduction to Finite and Boundary Element Methods for Engineers (Wiley, Chichester, UK, 1992).
  22. C. A. Brebbia and J. Dominguez, Boundary Elements, An Introductory Course (MacGraw-Hill, New York, 1989).
  23. J. Ripoll and M. Nieto-Vesperinas, “Scattering integral equations for diffusive waves: detection of objects buried in diffusive media in the presence of rough interfaces,” J. Opt. Soc. Am. A 16, 1453–1465 (1999).
  24. J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “The Kirchhoff approximation for diffusive waves,” Phys. Rev. E 64, 051917 (2001).
  25. P. Beckmann, in Progress in Optics VI, E. Wolf, ed. (North-Holland, Amsterdam, 1961), pp. 55–69.
  26. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Adam Hilger, Bristol, 1991).
  27. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Pergamon, New York, 1996).
  28. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  29. J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
  30. J. Ripoll, M. Nieto-Vesperinas, R. Weissleder, and V. Ntziachristos, “Fast analytical approximation for arbitrary geometries in diffuse optical tomography,” Opt. Lett. 27, 527–529 (2002).
  31. C. Macaskill and B. J. Kachoyan, “Iterative approach for the numerical simulation of scattering from one- and two-dimensional rough surfaces,” Appl. Opt. 32, 2839–2847 (1993).
  32. K. Davey and I. Rosindale, “An iterative solution scheme for systems of boundary element equations,” Int. J. Numer. Methods Eng. 37, 1399–1411 (1994).
  33. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
  34. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
  35. R. Haskell, B. Tromberg, L. Svaasand, T. Tsay, T. Feng, and M. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  36. J. Ripoll and M. Nieto-Vesperinas, “Reflection and transmission coefficients for diffuse photon density waves,” Opt. Lett. 24, 796–798 (1999).
  37. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
  38. T. Lu and D. O. Yevick, “Boundary element analysis of dielectric waveguides,” J. Opt. Soc. Am. A 19, 1197–1206 (2002).
  39. J. Ripoll, M. Nieto-Vesperinas, and R. Carminati, “Spatial resolution of diffuse photon density waves,” J. Opt. Soc. Am. A 16, 1466–1476 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited