OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 6 — Jun. 1, 2003
  • pp: 965–973

Hartmann–Shack technique and refraction across the horizontal visual field

David A. Atchison, Dion H. Scott, and W. Neil Charman  »View Author Affiliations


JOSA A, Vol. 20, Issue 6, pp. 965-973 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000965


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compared refractions across the horizontal visual field, based on different analyses of wave aberration obtained with a Hartmann–Shack instrument. The wave aberrations had been determined for 6-mm-diameter pupils up to at least the sixth Zernike order in five normal subjects [J. Opt. Soc. Am. A 19, 2180 (2002)]. The polynomials were converted into refractions based on 6-mm pupils and second-order Zernike aberrations (6 mm/2nd order), 3-mm pupils and second-order aberrations (3 mm/2nd order), 1-mm pupils and second-order aberrations (1 mm/2nd order), and 6-mm pupils with both second- and fourth-order aberrations (6 mm/4th order). The 3-mm/2nd-order and 6-mm/2nd-order refractions differed by as much as 0.9 D in mean sphere on axis, but the differences reduced markedly toward the edges of the visual field. The cylindrical differences between these two analyses were small at the center of the visual field (<0.3 D) but increased into the periphery to be greater than 1.0 D for some subjects. Much smaller differences in mean sphere and cylinder were found when 3-mm/2nd-order refractions and either the 1-mm/2nd-order refractions or the 6-mm/4th-order refractions were compared. The results suggest that, for determining refractions based on wave aberration data with large pupils, similar results occur by either restricting the analysis to second-order Zernike aberrations with a smaller pupil such as 3 mm or using both second- and fourth-order Zernike aberrations. Since subjective refraction is largely independent of the pupil size under photopic conditions, objective refractions based on either of these analyses may be the most useful.

© 2003 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

History
Original Manuscript: September 9, 2002
Revised Manuscript: February 24, 2003
Manuscript Accepted: February 24, 2003
Published: June 1, 2003

Citation
David A. Atchison, Dion H. Scott, and W. Neil Charman, "Hartmann–Shack technique and refraction across the horizontal visual field," J. Opt. Soc. Am. A 20, 965-973 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-6-965


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  2. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  3. T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998). [CrossRef]
  4. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001). [CrossRef]
  5. P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002). [CrossRef]
  6. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  7. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  8. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996). [CrossRef] [PubMed]
  9. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef] [PubMed]
  10. G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002). [CrossRef]
  11. K. Munson, X. Hong, L. N. Thibos, “Use of a Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001). [CrossRef]
  12. X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001). [CrossRef]
  13. L. N. Thibos, X. Hong, “Clinical applications of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999). [CrossRef]
  14. D. A. Atchison, D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19, 2180–2184 (2002). [CrossRef]
  15. C. E. Campbell, W. J. Bemjamin, H. C. Howland, “Objective refraction: retinoscopy, autorefraction, and photorefraction,” in Borish’s Clinical Refraction, W. J. Benjamin, ed. (Saunders, Philadelphia, Pa., 1998), Chap. 15.
  16. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002). [PubMed]
  17. M. C. Mrochen, M. Bueeler, T. Seiler, “Influence of higher-order optical aberrations on refraction,” Invest. Ophthalmol. Visual Sci. Suppl. 43, S82 (2002).
  18. M. Koomen, R. Scolnik, R. Tousey, “A study of night myopia,” J. Opt. Soc. Am. 41, 80–90 (1951). [CrossRef]
  19. W. N. Charman, J. A. Jennings, H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Brit. J. Physiol. Opt. 32, 78–93 (1978).
  20. D. A. Atchison, G. Smith, N. Efron, “The effect of pupil size on visual acuity in uncorrected and corrected myopia,” Am. J. Optom. Physiol. Opt. 56, 315–323 (1979). [CrossRef] [PubMed]
  21. R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998). [CrossRef]
  22. A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999). [CrossRef] [PubMed]
  23. R. Navarro, J. Santamarı́a, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985). [CrossRef] [PubMed]
  24. I. Escudero-Sanz, R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999). [CrossRef]
  25. D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), pp. 147–149, 173–176.
  26. C. E. Ferree, G. Rand, C. Hardy, “Refraction for the peripheral field of vision,” Arch. Ophthalmol. 9, 925–938 (1931). [CrossRef]
  27. C. E. Ferree, G. Rand, C. Hardy, “Refractive asymmetry in the temporal and nasal halves of the visual field,” Am. J. Ophthalmol. 15, 513–522 (1932).
  28. C. E. Ferree, G. Rand, “Interpretation of refractive conditions in the peripheral field of vision,” Arch. Ophthalmol. 5, 717–731 (1933). [CrossRef]
  29. F. Rempt, J. Hoogerheide, W. P. H. Hoogenbloom, “Peripheral retinoscopy and the skiagram,” Ophthalmologica 162, 1–10 (1971). [CrossRef] [PubMed]
  30. W. Lotmar, T. Lotmar, “Peripheral astigmatism in the human eye: experimental data and theoretical model predictions,” J. Opt. Soc. Am. 64, 510–513 (1974). [CrossRef] [PubMed]
  31. M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981). [PubMed]
  32. M. C. M. Dunne, G. P. Mission, E. K. White, D. Barnes, “Peripheral astigmatic asymmetry and angle alpha,” Ophthalmic Physiol. Opt. 13, 303–305 (1993). [CrossRef] [PubMed]
  33. J. Gustafsson, E. Terenius, J. Buchheister, P. Unsbo, “Peripheral astigmatism in emmetropic eyes,” Ophthalmic Physiol. Opt. 21, 393–400 (2001). [CrossRef] [PubMed]
  34. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373 (2002). [CrossRef]
  35. J. Love, B. Gilmartin, M. C. M. Dunne, “Relative peripheral refractive error in adult myopia and emmetropia,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S302 (2000).
  36. L. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  37. A. Guirao, D. R. Williams, “An objective method to predict refractive errors from wave aberration data,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S98 (2001).
  38. A. Guirao, D. R. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vision Sci. 80, 36–42 (2003). [CrossRef]
  39. G. Smith, D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge U. Press, New York, 1997), Chap. 33.
  40. D. A. Atchison, D. H. Scott, M. J. Cox, “Mathematical treatment of ocular aberrations: a user’s guide,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.
  41. T. O. Salmon, L. N. Thibos, “Videokeratoscope—line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited