OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1223–1229

High-resolution optical diffraction microscopy

Kamal Belkebir and Anne Sentenac  »View Author Affiliations


JOSA A, Vol. 20, Issue 7, pp. 1223-1229 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001223


View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In an optical diffraction microscopy experiment, one measures the phase and amplitude of the field diffracted by the sample and uses an inversion algorithm to reconstruct its map of permittivity. We show that with an iterative procedure accounting for multiple scattering, it is possible to visualize details smaller than λ/4 with relatively few illumination and observation angles. The roles of incident evanescent waves and noise are also investigated.

© 2003 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering

History
Original Manuscript: October 10, 2002
Revised Manuscript: February 25, 2003
Manuscript Accepted: February 25, 2003
Published: July 1, 2003

Citation
Kamal Belkebir and Anne Sentenac, "High-resolution optical diffraction microscopy," J. Opt. Soc. Am. A 20, 1223-1229 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-7-1223


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. S. Carney, J. C. Schotland, “Inverse scattering for near-field microscopy,” Appl. Phys. Lett. 77, 2798–2800 (2000). [CrossRef]
  2. O. Haeberlé, A. Dieterlen, S. Jacquey, “Multiple-objective microscopy with three-dimensional resolution near 100 nm and a long working distance,” Opt. Lett. 26, 1684–1686 (2001). [CrossRef]
  3. J. Enderlein, “Theoretical study of detection of a dipole emitter through an objective with high numerical aperture,” Opt. Lett. 25, 634–636 (2000). [CrossRef]
  4. J.-J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997). [CrossRef]
  5. S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001). [CrossRef]
  6. P. S. Carney, J. C. Schotland, “Three-dimensional total internal reflection microscopy,” Opt. Lett. 26, 1072–1074 (2001). [CrossRef]
  7. C. M. Blanca, J. Bewersdorf, S. W. Hell, “Single sharp spot in fluorescence microscopy of two opposing lenses,” Appl. Phys. Lett. 79, 2321–2323 (2001). [CrossRef]
  8. M. Lambert, D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Probl. 16, 563–576 (2000). [CrossRef]
  9. V. Lauer, “New approach to optical diffraction tomographyyielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002). [CrossRef] [PubMed]
  10. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  11. S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987). [CrossRef]
  12. K. Belkebir, A. G. Tijhuis, “Modified2 gradient method and modified Born method for solving a two-dimensional inverse scattering problem,” Inverse Probl. 17, 1671–1688 (2001). [CrossRef]
  13. W. C. Chew, Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using distorted Born iterative method,” IEEE Trans. Med. Imaging 9, 218–225 (1990). [CrossRef]
  14. J.-J. Greffet, “Scattering of s-polarized electromagnetic waves by a 2D obstacle near an interface,” Opt. Commun. 72, 274–278 (1989). [CrossRef]
  15. N. Joachimowicz, C. Pichot, J.-P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propag. 39, 1742–1753 (1991). [CrossRef]
  16. R. E. Kleinman, P. M. van den Berg, “A modified gradient method for two-dimensional problems in tomography,” J. Comput. Appl. Math. 42, 17–35 (1992). [CrossRef]
  17. R. E. Kleinman, P. M. van den Berg, “An extended range-modified gradient technique for profile inversion,” Radio Sci. 28, 877–884 (1993). [CrossRef]
  18. K. Belkebir, S. Bonnard, F. Pezin, P. Sabouroux, M. Saillard, “Validation of 2D inverse scattering algorithms from multi-frequency experimental data,” J. Electromagn. Waves Appl. 14, 1637–1667 (2000). [CrossRef]
  19. L. Souriau, B. Duchêne, D. Lesselier, R. E. Kleinman, “Modified gradient approach to inverse scattering for binary objects in stratified media,” Inverse Probl. 12, 463–481 (1996). [CrossRef]
  20. R. E. Kleinman, P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci. 29, 1157–1169 (1994). [CrossRef]
  21. K. Belkebir, R. E. Kleinman, C. Pichot, “Microwave imaging: Location and shape reconstruction from multifrequency scattering data,” IEEE Trans. Microwave Theory Tech. 45, 469–476 (1997). [CrossRef]
  22. W. H. Press, B. P. Flannery, S. A. Teukolski, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University, Cambridge, UK, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited