OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1253–1260

Coding of the contrasts in natural images by visual cortex (V1) neurons: a Bayesian approach

Mazviita Chirimuuta, Philip L. Clatworthy, and David J. Tolhurst  »View Author Affiliations


JOSA A, Vol. 20, Issue 7, pp. 1253-1260 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001253


View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Individual V1 neurons respond dynamically over only limited ranges of stimulus contrasts, yet we can discriminate contrasts over a wide range. Different V1 neurons cover different parts of the contrast range, and the information they provide must be pooled somehow. We describe a probabilistic pooling model that shows that populations of neurons with contrast responses like those in cat and monkey V1 would most accurately code contrasts in the range actually found in natural scenes. The pooling equation is similar to Bayes’s equation; however, explicit inclusion of prior probabilities in the inference increases coding accuracy only slightly.

© 2003 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology

History
Original Manuscript: September 30, 2002
Revised Manuscript: January 28, 2003
Manuscript Accepted: January 28, 2003
Published: July 1, 2003

Citation
Mazviita Chirimuuta, Philip L. Clatworthy, and David J. Tolhurst, "Coding of the contrasts in natural images by visual cortex (V1) neurons: a Bayesian approach," J. Opt. Soc. Am. A 20, 1253-1260 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-7-1253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Ruderman, “The statistics of natural images,” Network 5, 517–548 (1994). [CrossRef]
  2. B. A. Olshausen, D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311–3325 (1997). [CrossRef]
  3. J. H. van Hateren, A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London Ser. B 265, 359–366 (1998). [CrossRef]
  4. W. S. Geisler, J. S. Perry, B. J. Super, D. P. Gallogly, “Edge co-occurrence in natural images predicts contour grouping performance,” Vision Res. 41, 711–724 (2000). [CrossRef]
  5. D. Marr, Vision (Freeman, San Francisco, Calif., 1982).
  6. D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).
  7. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  8. J. A. Movshon, I. D. Thompson, D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual cortex,” J. Physiol. (London) 283, 101–120 (1978).
  9. R. L. De Valois, E. W. Yund, N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531–544 (1982). [CrossRef] [PubMed]
  10. R. L. De Valois, D. G. Albrecht, L. G. Thorell, “Spatial frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982). [CrossRef] [PubMed]
  11. J. P. Jones, A. Stepnowski, L. A. Palmer, “The two-dimensional spectral structure of simple cell receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1212–1232 (1987). [PubMed]
  12. J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1187–1211 (1987). [PubMed]
  13. G. C. De Angelis, J. G. Robson, I. Ohzawa, R. D. Freeman, “Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex,” J. Neurophysiol. 68, 144–163 (1992).
  14. D. L. Ringach, “Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex,” J. Neurophysiol. 88, 455–463 (2002). [PubMed]
  15. R. J. Baddeley, P. J. Hancock, “A statistical analysis of natural images matches psychophysically derived orientation tuning curves,” Proc. R. Soc. London Ser. B 246, 219–223 (1991). [CrossRef]
  16. G. M. Boynton, J. B. Demb, G. H. Glover, D. J. Heeger, “Neuronal basis of contrast discrimination,” Vision Res. 39, 257–269 (1999). [CrossRef] [PubMed]
  17. D. J. Heeger, A. Huk, W. S. Geisler, D. G. Albrecht, “Spikes versus BOLD: What does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000). [CrossRef] [PubMed]
  18. L. L. Kontsevich, C. C. Chen, C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771–1784 (2002). [CrossRef] [PubMed]
  19. D. J. Tolhurst, J. A. Movshon, I. D. Thompson, “The dependence of response amplitude and variance of cat visual cortical neuron on stimulus contrast,” Exp. Brain Res. 41, 414–419 (1981).
  20. D. J. Tolhurst, J. A. Movshon, A. F. Dean, “The statistical reliability of signals in single neurons in cat and monkey visual cortex,” Vision Res. 23, 775–785 (1983). [CrossRef] [PubMed]
  21. A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755–771 (1987). [PubMed]
  22. R. Vogels, W. Spileers, G. A. Orban, “The response variability of striate cortical neurons in the behaving monkey,” Exp. Brain Res. 77, 432–436 (1989). [CrossRef] [PubMed]
  23. W. S. Geisler, D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination and identification,” Visual Neurosci. 14, 897–919 (1997). [CrossRef]
  24. D. G. Albrecht, D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982). [PubMed]
  25. G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990). [CrossRef] [PubMed]
  26. F. Sengpiel, R. J. Baddeley, T. C. B. Freeman, R. Harrad, C. Blakemore, “Different mechanisms underlie three inhibitory phenomena in cat area 17,” Vision Res. 38, 2067–2080 (1998). [CrossRef] [PubMed]
  27. D. J. Tolhurst, “The amount of information transmitted about contrast by neurons in the cat’s visual cortex,” Visual Neurosci. 2, 409–413 (1989). [CrossRef]
  28. W. S. Geisler, D. G. Albrecht, “Bayesian analysis of identification in monkey visual cortex: nonlinear mechanisms and stimulus certainty,” Vision Res. 35, 2723–2730 (1995). [CrossRef] [PubMed]
  29. P. Mamassian, M. Landy, L. T. Maloney, “Bayesian modeling of visual perception,” in Probabilistic Models of the Brain, R. P. N. Rao, B. A. Olshausen, M. S. Lewicki, eds. (MIT Press, Cambridge, Mass., 2002).
  30. S. Laughlin, “A Simple Coding Procedure Enhances a Neuron’s Information Capacity,” Z. Naturforsch. Teil C 36, 910–912 (1981).
  31. D. J. Tolhurst, “The limited contrast-response of single neurons in cat striate cortex and the distribution of contrasts in natural scenes,” J. Physiol. (London) 497, 64P (1996).
  32. N. Brady, D. J. Field, “Local contrast in natural images: normalisation and coding efficiency,” Perception 29, 1041–1055 (2000). [CrossRef]
  33. Y. Tadmor, D. J. Tolhurst, “Calculating the contrasts that retinal ganglion cells and LGN neurons encounter in natural scenes,” Vision Res. 40, 3145–3157 (2000). [CrossRef]
  34. A. Anzai, M. A. Bearse, R. D. Freeman, D. Q. Cai, “Contrast coding by cells in the cat’s striate cortex,” Visual Neurosci. 12, 77–93 (1995). [CrossRef]
  35. K. I. Naka, W. A. H. Rushton, “S-potentials from colour units in the retina of fish (Cyprinidae),” J. Physiol. (London) 185, 536–555 (1966).
  36. D. J. Heeger, “Half-squaring in responses of cat striate cortex,” Visual Neurosci. 9, 427–443 (1992). [CrossRef]
  37. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992). [CrossRef]
  38. A. Gottschalk, “Derivation of the visual contrast response function by maximizing information rate,” Neural Comput. 14, 527–542 (2002). [CrossRef] [PubMed]
  39. D. L. Ringach, Departments of Neurobiology and Psychology, Franz Hall, Room 8441B, University of California, LosAngeles, Los Angeles, California 90095-1563 (personal communication, 2002).
  40. D. L. Ringach, M. J. Hawken, R. Shapley, “Dynamics of orientation tuning in macaque primary visual cortex,” Nature 387, 281–284 (1997). [CrossRef] [PubMed]
  41. D. L. Ringach, R. Shapley, M. J. Hawken, “Orientation selectivity in macaque V1: diversity and laminar dependence,” J. Neurosci. 22, 5639–5651 (2002). [PubMed]
  42. P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, D. J. Tolhurst, “Coding of the contrasts in natural images by populations of neurons in striate visual cortex (V1),” Vision Res. (to be published).
  43. M. N. Shadlen, K. H. Britten, W. T. Newsome, J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioural responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996). [PubMed]
  44. J. S. Lauritzen, A. Pelah, D. J. Tolhurst, “Perceptual rules for watermarking images: A psychophysical study of the visual basis for digital pattern encryption,” in Human Vision and Electronic Imaging IV, B. E. Rogowitz, T. N. Pappas, eds., Proc. SPIE3644, 392–402 (1999). [CrossRef]
  45. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990). [CrossRef] [PubMed]
  46. Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994). [CrossRef] [PubMed]
  47. S. Marcelja, “Mathematical description of the responses of simple cortical cells,” J. Opt. Soc. Am. A 70, 1297–1300 (1980). [CrossRef]
  48. D. J. Field, D. J. Tolhurst, “The structure and symmetry of simple-cell receptive field profiles in the cat’s visual cortex,” Proc. R. Soc. London Ser. B 228, 379–400 (1986). [CrossRef]
  49. J. P. Jones, L. A. Palmer, “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1233–1258 (1987). [PubMed]
  50. D. J. Tolhurst, I. D. Thompson, “On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat,” Proc. R. Soc. London B213, 183–199 (1981). [CrossRef]
  51. D. J. Tolhurst, Y. Tadmor, Tang Chao, “The amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229–232 (1992). [CrossRef] [PubMed]
  52. M. V. Srinivasan, S. Laughlin, A. Dubs, “Predictive coding: A fresh view of inhibition in the retina,” Proc. R. Soc. London Ser. B 216, 427–459 (1982). [CrossRef]
  53. C. Blakemore, G. F. Cooper, “Development of the brain depends on visual environment,” Nature 228, 477–478 (1970). [CrossRef] [PubMed]
  54. C. Blakemore, R. C. van Sluyters, “Innate and environmental factors in the development of the kitten’s visual cortex,” J. Physiol. (London) 248, 663–716 (1975).
  55. I. Ohzawa, G. Sclar, R. D. Freeman, “Contrast gain control in the cat’s visual system,” J. Neurophysiol. 54, 651–665 (1985). [PubMed]
  56. A. B. Bonds, “Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex,” Visual Neurosci. 2, 41–55 (1989). [CrossRef]
  57. W. S. Geisler, R. L. Diehl, “Bayesian natural selection and the evolution of perceptual systems,” Philos. Trans. R. Soc. London, Ser. B 357, 419–448 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited