OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1283–1291

Surface segmentation based on the luminance and color statistics of natural scenes

Ione Fine, Donald I. A. MacLeod, and Geoffrey M. Boynton  »View Author Affiliations


JOSA A, Vol. 20, Issue 7, pp. 1283-1291 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001283


View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The luminance and color of surfaces in natural scenes are relatively independent under certain linear transformations, with the luminance of a surface providing little information about the color of that surface, and vice versa. However, differences in luminance between two locations in a natural scene remain strongly associated with differences in color. We used the statistics of the spatiochromatic structure of natural scenes as the priors for a Bayesian model that decides whether or not two points within an image fall on the same surface. This model provides a biologically plausible algorithm for surface segmentation that models observer segmentations well.

© 2003 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling

History
Original Manuscript: January 29, 2002
Revised Manuscript: September 12, 2002
Manuscript Accepted: September 12, 2002
Published: July 1, 2003

Citation
Ione Fine, Donald I. A. MacLeod, and Geoffrey M. Boynton, "Surface segmentation based on the luminance and color statistics of natural scenes," J. Opt. Soc. Am. A 20, 1283-1291 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-7-1283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Sec. B 220, 89–113 (1983). [CrossRef]
  2. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  3. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982). [CrossRef] [PubMed]
  4. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990). [PubMed]
  5. K. R. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992). [CrossRef] [PubMed]
  6. D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997). [CrossRef]
  7. A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997). [CrossRef] [PubMed]
  8. M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef] [PubMed]
  9. D. R. Ruderman, T. W. Cronin, C. C. Chiao, “Statisticsof cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  10. A. Stockman, D. I. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993). [CrossRef]
  11. P. Flanagan, P. Cavanagh, O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vision Res. 30, 769–778 (1990). [CrossRef] [PubMed]
  12. D. L. Ruderman, “The statistics of natural images,” Network 6, 345–358 (1994).
  13. M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997). [CrossRef]
  14. T. von der Twer, D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colours,” Network 12, 395–407 (2001). [CrossRef] [PubMed]
  15. A. J. Bell, T. J. Sejnowski, “The “independent components” of natural scenes are edge filters,” Vision Res. 37, 3327–3338 (1997). [CrossRef]
  16. T. Wachtler, T. W. Lee, T. J. Sejnowski, “Chromatic structure of natural scenes,” J. Opt. Soc. Am. A 18, 65–77 (2001). [CrossRef]
  17. D. R. Tailor, L. H. Finkel, G. Buchsbaum, “Color-opponent receptive fields derived from independent component analysis of natural images,” Vision Res. 40, 2671–2676 (2000). [CrossRef] [PubMed]
  18. S. S. Stevens, “Psychophysics of sensory function,” Am. Sci. 48, 226–252 (1960).
  19. C. A. Parraga, G. Brelstaff, T. Troscianko, I. Moorhead, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A 15, 563–569 (1998). [CrossRef]
  20. N. J. Dominy, P. W. Lucas, “Ecological importance of trichromatic vision to primates,” Nature 410, 363–366 (2001). [CrossRef] [PubMed]
  21. B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey,” Vision Res. 38, 3321–3327 (1998). [CrossRef]
  22. K. R. Gegenfurtner, J. Rieger, “Sensory and cognitive contributions of color to the recognition of natural scenes,” Curr. Biol. 10, 805–808 (2000). [CrossRef] [PubMed]
  23. L. H. Wurm, G. E. Legge, L. M. Isenberg, A. Luebker, “Color improves object recognition in normal and low vision,” J. Exp. Psychol. Hum. Percept. Perform. 19, 899–911 (1993). [CrossRef] [PubMed]
  24. A. L. Nagy, R. R. Sanchez, “Chromaticity and luminance as coding dimensions in visual search,” Hum. Factors 34, 601–614 (1992). [PubMed]
  25. M. Celenk, S. H. Smith, “Gross segmentation of color images of natural scenes for computer vision systems,” Appl. Artif. Intell. III, 333–344 (1986).
  26. J. Liu, Y. Yang, “Multi-resolution color image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 689–700 (1994). [CrossRef]
  27. R. Ohlander, K. E. Price, R. Reddy, “Picture segmentation by a recursive region splitting method,” Comput. Graph. Image Process. 8, 313–323 (1978). [CrossRef]
  28. Y. I. Ohta, T. Kanade, T. Sakai, “Color information for region segmentation,” Comput. Graph. Image Process. 13, 222–241 (1980). [CrossRef]
  29. E. P. Simoncelli, B. A. Olshausen, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001). [CrossRef] [PubMed]
  30. W. S. Geisler, J. S. Perry, B. J. Super, D. P. Gallogly, “Edge co-occurrence in natural images predicts contour grouping performance,” Vision Res. 41, 711–724 (2001). [CrossRef] [PubMed]
  31. M. Sigman, G. A. Cecchi, C. D. Gilbert, M. O. Magnasco, “On a common circle: natural scenes and Gestalt rules,” Proc. Natl. Acad. Sci. USA 98, 1935–1940 (2001).
  32. E. N. Johnson, M. J. Hawken, R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409–416 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited