OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1382–1390

Local computation of angular velocity in rotational visual motion

José F. Barraza and Norberto M. Grzywacz  »View Author Affiliations

JOSA A, Vol. 20, Issue 7, pp. 1382-1390 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retinal images evolve continuously over time owing to self-motions and to movements in the world. Such an evolving image, also known as optic flow, if arising from natural scenes can be locally decomposed in a Bayesian manner into several elementary components, including translation, expansion, and rotation. To take advantage of this decomposition, the brain has neurons tuned to these types of motions. However, these neurons typically have large receptive fields, often spanning tens of degrees of visual angle. Can neurons such as these compute elementary optic-flow components sufficiently locally to achieve a reasonable decomposition? We show that human discrimination of angular velocity is local. Local discrimination of angular velocity requires an accurate estimation of the center of rotation within the optic-flow field. Inaccuracies in estimating the center of rotation result in a predictable systematic error when one is estimating local angular velocity. Our results show that humans make the predicted errors. We discuss how the brain might estimate the elementary components of the optic flow locally by using large receptive fields.

© 2003 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4150) Vision, color, and visual optics : Motion detection

Original Manuscript: November 7, 2002
Revised Manuscript: March 27, 2003
Manuscript Accepted: March 27, 2003
Published: July 1, 2003

José F. Barraza and Norberto M. Grzywacz, "Local computation of angular velocity in rotational visual motion," J. Opt. Soc. Am. A 20, 1382-1390 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Gibson, The Perception of the Visual World (Houghton Mifflin, Boston, Mass., 1950).
  2. J. J. Koenderink, A. J. van Doorn, “Local structure of movement parallax of the plane,” J. Opt. Soc. Am. 66, 717–723 (1976). [CrossRef]
  3. A. L. Yuille, N. M. Grzywacz, “A theoretical framework for visual motion,” in High-Level Motion Processing—Computational, Neurobiological, and Psychophysical Perspectives, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 187–211.
  4. S. P. McKee, “A local mechanism for differential velocity detection,” Vision Res. 21, 491–500 (1981). [CrossRef] [PubMed]
  5. A. Johnston, C. P. Benton, N. J. Morgan, “Concurrent measurement of perceived speed and speed discrimination using the method of single stimuli,” Vision Res. 39, 3849–3854 (1999). [CrossRef]
  6. J. F. Barraza, N. M. Grzywacz, “Measurement of angular velocity in the perception of rotation,” Vision Res. 42, 2457–2462 (2002). [CrossRef] [PubMed]
  7. P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997). [CrossRef]
  8. B. J. Geesaman, N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996). [CrossRef] [PubMed]
  9. B. J. Geesaman, N. Qian, “The effect of complex motion pattern on speed perception,” Vision Res. 38, 1223–1231 (1998). [CrossRef] [PubMed]
  10. C. W. G. Clifford, S. A. Beardsley, L. M. Vaina, “The perception and discrimination of speed in complex motion,” Vision Res. 39, 2213–2227 (1999). [CrossRef] [PubMed]
  11. D. Regan, K. J. Beberley, “Visual responses to vorticity and the neural analysis of optic flow,” J. Opt. Soc. Am. A 2, 280–283 (1985). [CrossRef] [PubMed]
  12. T. A. C. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992). [CrossRef] [PubMed]
  13. M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature 376, 507–509 (1995). [CrossRef] [PubMed]
  14. S. F. te Pas, A. M. L. Kappers, J. J. Koenderink, “Detection of first-order structure in optic flow fields,” Vision Res. 36, 259–270 (1996). [CrossRef] [PubMed]
  15. J. H. R. Maunsell, D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I: selectivity for stimulus direction, speed, and orientation,” J. Neurophys. 49, 1127–1147 (1983).
  16. A. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophys. 62, 626–641 (1989).
  17. A. Tanaka, Y. Fukuda, H. Saito, “Underlying mechanisms of the response specificity of expansion/contraction, and rotation cells, in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophys. 62, 642–656 (1989).
  18. C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophys. 65, 1346–1359 (1991).
  19. C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli,” J. Neurophys. 65, 1346–1359 (1991).
  20. M. S. A. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994). [PubMed]
  21. G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
  22. M. Egelhaaf, R. Kern, H. G. Krapp, J. Kretzberg, A. Warzecha, “Naural encoding of behaviourally relevant visual-motion information in the fly,” Trends Neurosci. 25, 96–102 (2002). [CrossRef] [PubMed]
  23. D. R. W. Wylie, W. F. Bischof, B. J. Frost, “Common reference frame for neural coding of translational and rotational optic flow,” Nature 392, 278–282 (1998). [CrossRef] [PubMed]
  24. J. F. Barraza, N. M. Grzywacz, “Fine discrimination of angular velocity despite poor localization of center of rotation,” presented at Vision Sciences Society 2nd Annual Meeting, Sarasota, Florida, May 10–15, 2002.
  25. M. E. Goldberg, H. M. Eggers, P. Gouras. “The ocular motor system,” in Principles of Neural Science, E. R. Kandel, J. H. Schwartz, T. M. Jessell, eds. (Appleton & Lange, Norwalk, Conn., 1991), pp. 660–677.
  26. A. Movshon, E. Adelson, M. Gizzi, W. Newsome, “The analysis of moving visual patterns,” Exp. Brain Res. 11, 117–152 (1986). [CrossRef]
  27. P. R. Schrater, E. P. Simoncelli, “Local velocity representation: evidence from motion adaptation,” Vision Res. 38, 3899–3912 (1998). [CrossRef]
  28. D. Ascher, N. M. Grzywacz, “A Bayesian model for the measurement of visual velocity,” Vision Res. 40, 3427–3434 (2000). [CrossRef] [PubMed]
  29. S. J. Nowlan, T. J. Sejnowski, “A selection model for motion processing in area MT of primates,” J. Neurosci. 15, 1195–1214 (1995). [PubMed]
  30. E. Simoncelli, D. Heeger, “A model of neural responses in visual area MT,” Vision Res. 38, 743–761 (1998). [CrossRef] [PubMed]
  31. N. M. Grzywacz, A. L. Yuille, “A model for the estimate of local image velocity by cells in the visual cortex,” Proc. R. Soc. London Ser. B 239, 129–161 (1990). [CrossRef]
  32. J. A. Perrone, “Model for the computation of self-motion in biological systems,” J. Opt. Soc. Am. A9, 177–194 (1992). [CrossRef]
  33. B. P. Dyre, G. J. Andersen, “Image velocity and perception of heading,” J. Exp. Psychol. Hum. Percept. Perform. 23, 546–565 (1997). [CrossRef] [PubMed]
  34. J. A. Perrone, A. Thiele, “Speed skills: measuring the visual speed analyzing properties of primate MT neurons,” Nat. Neurosci. 4, 526–532 (2001). [PubMed]
  35. S. Raiguel, M. M. Van Hulle, D. K. Xiao, V. L. Marcar, L. Lagae, G. A. Orban, “Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque,” NeuroReport 8, 2803–2800 (1997). [CrossRef] [PubMed]
  36. D. C. Hoagling, F. Mosteller, J. W. Tukey, “Introduction to more refined estimators,” in Understanding Robust and Exploratory Data Analysis, D. C. Hoagling, F. Mosteller, J. W. Tukey, eds. (Wiley, New York, 1983), pp. 283–296.
  37. A. L. Yuille, N. M. Grzywacz, “A mathematical analysis of the motion coherence theory,” Int. J. Comput. Vision 3, 155–175 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited