OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 7 — Jul. 1, 2003
  • pp: 1382–1390

Local computation of angular velocity in rotational visual motion

José F. Barraza and Norberto M. Grzywacz  »View Author Affiliations


JOSA A, Vol. 20, Issue 7, pp. 1382-1390 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001382


View Full Text Article

Acrobat PDF (441 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Retinal images evolve continuously over time owing to self-motions and to movements in the world. Such an evolving image, also known as optic flow, if arising from natural scenes can be locally decomposed in a Bayesian manner into several elementary components, including translation, expansion, and rotation. To take advantage of this decomposition, the brain has neurons tuned to these types of motions. However, these neurons typically have large receptive fields, often spanning tens of degrees of visual angle. Can neurons such as these compute elementary optic-flow components sufficiently locally to achieve a reasonable decomposition? We show that human discrimination of angular velocity is local. Local discrimination of angular velocity requires an accurate estimation of the center of rotation within the optic-flow field. Inaccuracies in estimating the center of rotation result in a predictable systematic error when one is estimating local angular velocity. Our results show that humans make the predicted errors. We discuss how the brain might estimate the elementary components of the optic flow locally by using large receptive fields.

© 2003 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4150) Vision, color, and visual optics : Motion detection

Citation
José F. Barraza and Norberto M. Grzywacz, "Local computation of angular velocity in rotational visual motion," J. Opt. Soc. Am. A 20, 1382-1390 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-7-1382


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. J. Gibson, The Perception of the Visual World (Houghton Mifflin, Boston, Mass., 1950).
  2. J. J. Koenderink and A. J. van Doorn, “Local structure of movement parallax of the plane,” J. Opt. Soc. Am. 66, 717–723 (1976).
  3. A. L. Yuille and N. M. Grzywacz, “A theoretical framework for visual motion,” in High-Level Motion Processing—Computational, Neurobiological, and Psychophysical Perspectives, T. Watanabe, ed. (MIT Press, Cambridge, Mass., 1998), pp. 187–211.
  4. S. P. McKee, “A local mechanism for differential velocity detection,” Vision Res. 21, 491–500 (1981).
  5. A. Johnston, C. P. Benton, and N. J. Morgan, “Concurrent measurement of perceived speed and speed discrimination using the method of single stimuli,” Vision Res. 39, 3849–3854 (1999).
  6. J. F. Barraza and N. M. Grzywacz, “Measurement of angular velocity in the perception of rotation,” Vision Res. 42, 2457–2462 (2002).
  7. P. J. Bex and W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
  8. B. J. Geesaman and N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996).
  9. B. J. Geesaman and N. Qian, “The effect of complex motion pattern on speed perception,” Vision Res. 38, 1223–1231 (1998).
  10. C. W. G. Clifford, S. A. Beardsley, and L. M. Vaina, “The perception and discrimination of speed in complex motion,” Vision Res. 39, 2213–2227 (1999).
  11. D. Regan and K. J. Beberley, “Visual responses to vorticity and the neural analysis of optic flow,” J. Opt. Soc. Am. A 2, 280–283 (1985).
  12. T. A. C. Freeman and M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
  13. M. C. Morrone, D. C. Burr, and L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature 376, 507–509 (1995).
  14. S. F. te Pas, A. M. L. Kappers, and J. J. Koenderink, “Detection of first-order structure in optic flow fields,” Vision Res. 36, 259–270 (1996).
  15. J. H. R. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I: selectivity for stimulus direction, speed, and orientation,” J. Neurophys. 49, 1127–1147 (1983).
  16. A. Tanaka and H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophys. 62, 626–641 (1989).
  17. A. Tanaka, Y. Fukuda, and H. Saito, “Underlying mechanisms of the response specificity of expansion/contraction, and rotation cells, in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophys. 62, 642–656 (1989).
  18. C. J. Duffy and R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophys. 65, 1346–1359 (1991).
  19. C. J. Duffy and R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli,” J. Neurophys. 65, 1346–1359 (1991).
  20. M. S. A. Graziano, R. A. Andersen, and R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
  21. G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, and V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
  22. M. Egelhaaf, R. Kern, H. G. Krapp, J. Kretzberg, and A. Warzecha, “Naural encoding of behaviourally relevant visual-motion information in the fly,” Trends Neurosci. 25, 96–102 (2002).
  23. D. R. W. Wylie, W. F. Bischof, and B. J. Frost, “Common reference frame for neural coding of translational and rotational optic flow,” Nature 392, 278–282 (1998).
  24. J. F. Barraza and N. M. Grzywacz, “Fine discrimination of angular velocity despite poor localization of center of rotation,” presented at Vision Sciences Society 2nd Annual Meeting, Sarasota, Florida, May 10–15, 2002.
  25. M. E. Goldberg, H. M. Eggers, and P. Gouras. “The ocular motor system,” in Principles of Neural Science, E. R. Kandel, J. H. Schwartz, and T. M. Jessell, eds. (Appleton & Lange, Norwalk, Conn., 1991), pp. 660–677.
  26. A. Movshon, E. Adelson, M. Gizzi, and W. Newsome, “The analysis of moving visual patterns,” Exp. Brain Res. 11, 117–152 (1986).
  27. P. R. Schrater and E. P. Simoncelli, “Local velocity representation: evidence from motion adaptation,” Vision Res. 38, 3899–3912 (1998).
  28. D. Ascher and N. M. Grzywacz, “A Bayesian model for the measurement of visual velocity,” Vision Res. 40, 3427–3434 (2000).
  29. S. J. Nowlan and T. J. Sejnowski, “A selection model for motion processing in area MT of primates,” J. Neurosci. 15, 1195–1214 (1995).
  30. E. Simoncelli and D. Heeger, “A model of neural responses in visual area MT,” Vision Res. 38, 743–761 (1998).
  31. N. M. Grzywacz and A. L. Yuille, “A model for the estimate of local image velocity by cells in the visual cortex,” Proc. R. Soc. London Ser. B 239, 129–161 (1990).
  32. J. A. Perrone, “Model for the computation of self-motion in biological systems,” J. Opt. Soc. Am. A9, 177–194 (1992).
  33. B. P. Dyre and G. J. Andersen, “Image velocity and perception of heading,” J. Exp. Psychol. Hum. Percept. Perform. 23, 546–565 (1997).
  34. J. A. Perrone and A. Thiele, “Speed skills: measuring the visual speed analyzing properties of primate MT neurons,” Nat. Neurosci. 4, 526–532 (2001).
  35. S. Raiguel, M. M. Van Hulle, D. K. Xiao, V. L. Marcar, L. Lagae, G. A. Orban, “Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque,” NeuroReport 8, 2803–2800 (1997).
  36. D. C. Hoagling, F. Mosteller, and J. W. Tukey, “Introduction to more refined estimators,” in Understanding Robust and Exploratory Data Analysis, D. C. Hoagling, F. Mosteller, and J. W. Tukey, eds. (Wiley, New York, 1983), pp. 283–296.
  37. A. L. Yuille and N. M. Grzywacz, “A mathematical analysis of the motion coherence theory,” Int. J. Comput. Vision 3, 155–175 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited