## Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane

JOSA A, Vol. 20, Issue 8, pp. 1528-1536 (2003)

http://dx.doi.org/10.1364/JOSAA.20.001528

Acrobat PDF (369 KB)

### Abstract

An analytical and concise formula is derived for the fractional Fourier transform (FRT) of partially coherent beams that is based on the tensorial propagation formula of the cross-spectral density of partially coherent twisted anisotropic Gaussian–Schell-model (GSM) beams. The corresponding tensor *ABCD* law performing the FRT is obtained. The connections between the FRT formula and the generalized diffraction integral formulas for partially coherent beams passing through aligned optical systems and misaligned optical systems are discussed. With use of the derived formula, the transformation and spectrum properties of partially coherent GSM beams in the FRT plane are studied in detail. The results show that the fractional order of the FRT has strong effects on the transformation properties and the spectrum properties of partially coherent GSM beams. Our method provides a simple and convenient way to study the FRT of twisted anisotropic GSM beams.

© 2003 Optical Society of America

**OCIS Codes**

(030.1640) Coherence and statistical optics : Coherence

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(070.2590) Fourier optics and signal processing : ABCD transforms

**Citation**

Yangjian Cai and Qiang Lin, "Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane," J. Opt. Soc. Am. A **20**, 1528-1536 (2003)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-8-1528

Sort: Year | Journal | Reset

### References

- V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1973).
- A. C. McBride and F. H. Kerr, “On Namia’s fractional Fourier transforms,” IMA J. Appl. Math. 39, 159–175 (1987).
- A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
- D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).
- H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).
- A. W. Lohmann and D. Mendlovic, “Fourier transform: photonic implementation,” Appl. Opt. 33, 7661–7664 (1994).
- P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transforms,” Opt. Lett. 19, 1388–1390 (1994).
- Z. Liu, X. Wu, and D. Fan, “Collins formula in frequency-domain and fractional Fourier transforms,” Opt. Commun. 155, 7–11 (1998).
- D. Mendlovic, Z. Zalevsky, R. G. Dorsch, Y. Bitran, A. W. Lohmann, and H. Ozaktas, “New signal representation based on the fractional Fourier transform: definitions,” J. Opt. Soc. Am. A 12, 2424–2431 (1995).
- S. C. Pei, M. H. Yeh, and T. L. Luo, “Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform,” IEEE Trans. Signal Process. 47, 2883–2888 (1999).
- S. Shinde and V. M. Gadre, “An uncertainty principle for real signals in the fractional Fourier transform domain,” IEEE Trans. Signal Process. 49, 2545–2548 (2001).
- Y. Zhang, B. Dong, B. Gu, and G. Yang, “Beam shaping in the fractional Fourier transform domain,” J. Opt. Soc. Am. A 15, 1114–1120 (1998).
- X. Xue, H. Q. Wei, and A. G. Kirk, “Beam analysis by fractional Fourier transform,” Opt. Lett. 26, 1746–1748 (2001).
- C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Process. 48, 1329–1337 (2000).
- J. Hua, L. Liu, and G. Li, “Scaled fractional Fourier transform and its optical implementation,” Appl. Opt. 36, 8490–8492 (1997).
- A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional Hilbert transform,” Opt. Lett. 21, 281–283 (1996).
- C. J. R. Sheppard and K. G. Larkin, “Similarity theorems for fractional Fourier transforms and fractional Hankel transforms,” Opt. Commun. 154, 173–178 (1998).
- B. Zhu and S. Liu, “Multifractional correlation,” Opt. Lett. 26, 578–580 (2001).
- M. F. Erden, H. M. Ozaktas, and D. Mendlovic, “Propagation of mutual intensity expressed in terms of the fractional Fourier transform,” J. Opt. Soc. Am. A 13, 1068–1071 (1996).
- M. F. Erden, H. M. Ozaktas, and D. Mendlovic, “Synthesis of mutual intensity distribution using the fractional Fourier transform,” Opt. Commun. 125, 288–301 (1996).
- J. H. Tu and S. Tamura, “Analytic relation for recovering the mutual intensity by means of intensity information,” J. Opt. Soc. Am. A 15, 202–206 (1998).
- Z. Zalevsky, D. Medlovic, and H. M. Ozaktas, “Energetic efficient synthesis of general mutual intensity distribution,” J. Opt. A Pure Appl. Opt. 2, 83–87 (2000).
- R. Simon and N. Mukunda, “Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146–2155 (1998).
- H. Yoshimura and T. Iwai, “Effects of lens aperture on the average intensity in a fractional Fourier plane,” Pure Appl. Opt. 7, 1133–1141 (1998).
- H. Yoshimura and T. Iwai, “Properties of the Gaussian Schell-Model source field in a fractional Fourier plane,” J. Opt. Soc. Am. A 14, 3388–3393 (1997).
- N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target,” Opt. Rev. 7, 216–220 (2000).
- A. Belendez, L. Carretero, and A. Fimia, “The use of partially coherent light to reduce the efficiency of silver halide noise gratings,” Opt. Commun. 98, 236–240 (1993).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
- K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995).
- R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 2373–2382 (1998).
- R. Simon and N. Mukunda, “Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization,” J. Opt. Soc. Am. A 15, 1361–1370 (1998).
- R. Simon and N. Mukunda, “Gaussian Schell-model beams and general shape invariance,” J. Opt. Soc. Am. A 16, 2465–2475 (1999).
- R. Simon and N. Mukunda, “Optical phase space, Wigner representation, and invariant quality parameters,” J. Opt. Soc. Am. A 17, 2440–2463 (2000).
- Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27, 216–218 (2002).
- Z. Jiang, “Scaling law and simultaneous optical implementation of various order fractional Fourier transform,” Opt. Lett. 20, 2408–2411 (1995).
- S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
- Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law,” Optik 85, 67–72 (1990).
- S. Wang and L. Ronchi, “Principles and design of optical array,” in Progress in Optics, Vol. XXV, E. Wolf, ed. (Elsevier, Amsterdam, 1988), p. 279.
- E. Wolf, “Invariance of spectrum on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
- E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
- F. Gori, G. L. Marcopoli, and M. Santarsiero, “Spectrum invariance on paraxial propagation,” Opt. Commun. 81, 123–130 (1991).
- A. Gamliel, “Mode analysis of spectral changes in light propagation from sources of any state of coherence,” J. Opt. Soc. Am. A 7, 1591–1597 (1990).
- H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, and K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
- F. Gori, G. Guattari, and C. Palma, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Acta 30, 1075–1097 (1983).
- C. Palma, G. Cardone, and G. Cincotti, “Spectral changes in Gaussian-cavity lasers,” IEEE J. Quantum Electron. 34, 1082–1088 (1998).
- C. Palma, G. Cincotti, and G. Guattari, “Spectral shift of a Gaussian Schell-model beam beyond a thin lens,” IEEE J. Quantum Electron. 34, 378–383 (1998).
- J. Pu and S. Nemoto, “Spectral shifts and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
- L. Pan and B. Lu, “The spectral switch of partially coherent light in Young’s experiment,” IEEE J. Quantum Electron. 37, 1377–1381 (2001).
- H. C. Kandpal, S. Anand, and J. S. Vaishva, “Experimental observation of the phenomenon of spectral switching for a class of partially coherent light,” IEEE J. Quantum Electron. 37, 336–339 (2002).
- Y. Cai and Q. Lin, “Spectral shift of partially coherent twisted anisotropic Gaussian Schell-model beams in free space,” Opt. Commun. 204, 17–23 (2002).
- Y. Cai and Q. Lin, “Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media,” J. Opt. Soc. Am. A 19, 2036–2042 (2002).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.