OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1589–1594

Light scattering by microscopic spheres behind a glass-air interface

Michael J. Jory, Elaine A. Perkins, and J. Roy Sambles  »View Author Affiliations

JOSA A, Vol. 20, Issue 8, pp. 1589-1594 (2003)

View Full Text Article

Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scattering of light from single spheres placed behind a glass–air interface with light incident through the glass is examined. This scattering is investigated for both <i>p</i>- and <i>s</i>-polarized light incident at angles below the glass–air critical angle. The intensity of light scattered into the air half-space from each sphere is measured as a function of scattering angle, and this response is compared <i>in situ</i> with the background scatter produced by the planar substrate. A detailed comparison between data and established theory are thereby obtained. This system is of interest in the field of optical biosensing.

© 2003 Optical Society of America

OCIS Codes
(240.6700) Optics at surfaces : Surfaces
(290.4020) Scattering : Mie theory
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

Michael J. Jory, Elaine A. Perkins, and J. Roy Sambles, "Light scattering by microscopic spheres behind a glass-air interface," J. Opt. Soc. Am. A 20, 1589-1594 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. 25, 377–445 (1908).
  2. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  3. H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  4. P. A. Bobbert and J. Vlieger, “Light-scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
  5. I. V. Lindell, A. H. Sihvola, K. O. Muinonen, and P. W. Barber, “Scattering by a small object close to an interface. I. Exact-image theory formulation,” J. Opt. Soc. Am. A 8, 472–476 (1991).
  6. K. O. Muinonen, A. H. Sihvola, I. V. Lindell, and K. A. Lumme, “Scattering by a small object close to an interface. 2. Study of backscattering,” J. Opt. Soc. Am. A 8, 477–482 (1991).
  7. G. Videen, “Light-scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); errata, 9, 844–845 (1992).
  8. A. Doicu, Y. A. Eremin, and T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–267 (1999).
  9. T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376–384 (1998).
  10. A. Doicu, Y. Eremin, and T. Wriedt, “Non-axisymmetric models for light scattering from a particle on or near a plane surface,” Opt. Commun. 182, 281–288 (2000).
  11. C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
  12. R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B Lasers Opt. 68, 225–232 (1999).
  13. B. J. Soller and D. G. Hall, “Dynamics modifications to the plasmon resonance of a metallic nanoparticle coupled to a planar waveguide: beyond the point-dipole limit,” J. Opt. Soc. Am. B 19, 1195–1203 (2002).
  14. H. Ishikawa, H. Tamaru, and K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000).
  15. G. Videen, “Light-scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110–117 (1993).
  16. D. C. Prieve, F. Lanni and F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” Faraday Discuss. 83, 297–307 (1987).
  17. D. C. Prieve and N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
  18. M. A. Brown, A. L. Smith and E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
  19. I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, and J. Stavans, “Objective-type dark-field illumination for scattering from microbeads,” Appl. Opt. 40, 5650–5657 (2001).
  20. G. A. Schumacher and T. G. M. Vandeven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
  21. Z. M. Xia and T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
  22. M. Polverari and T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
  23. W. J. Albery, G. R. Kneebone, and A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
  24. W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, and A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
  25. F. Yang, J. R. Sambles, and G. W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Opt. 38, 1441–1450 (1991).
  26. S. C. Kitson and J. R. Sambles, “Critical edge studies of highly absorbing anisotropic films,” Thin Solid Films 229, 128–132 (1993).
  27. B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
  28. C. Malins, M. Landl, P. Simon, and B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
  29. L. T. Gao, C. J. Seliskar and L. Milstein, “Spectroscopic sensing with a highly transparent, ion-exchangeable polymer blend,” Appl. Spectrosc. 51, 1745–1752 (1997).
  30. G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, and J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
  31. S. McCabe and B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
  32. M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, and J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).
  33. Corning 7509 fusion-drawn glass supplied by Gooch and Housego Ltd., The Old Magistrates Court, Ilminster, Somerset, TA19 OAS, UK; http://www.goochandhousego.com.
  34. UV-cured glue, Norland Optical Adhesive 65, refractive index 1.52, supplied by Tech Optics Ltd., Unit 6, Cala Industrial Estate, Tonbridge, Kent, UK; http://www.norlandprod.com.
  35. In situ microscope, Intel Play microscope supplied by Intel Corporation UK Ltd, Pipers Way, Swindon, Wiltshire, SN3 1RJ, UK; http://www.intel.com.
  36. E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.
  37. G. Videen and D. Ngo, “Light scattering from a cylinder near a plane interface: theory and comparison with experiment,” J. Opt. Soc. Am. A 14, 70–78 (1997).
  38. G. Videen, Q. Fu, and P. Chylek, “Special issue—light scattering by non-spherical particles-preface,” J. Quant. Spectrosc. Radiat. Transf. 70, 373–374 (2001).
  39. G. Videen and D. Secker, “Focus issue: Light scattering by non-spherical particles,” Opt. Express 8, 288–289 (200).
  40. Y. Eremin and N. Orlov, “Modelling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
  41. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  42. J. R. Sambles, G. W. Bradberry, and F. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32, 173–183 (1991).
  43. E. A. Perkins and D. J. Squirrell, “Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited