OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1629–1634

Amplitude and phase representation of monochromatic fields in physical optics

Manuel Fernández-Guasti, José L. Jiménez, Fermı́n Granados-Agustı́n, and Alejandro Cornejo-Rodrı́guez  »View Author Affiliations

JOSA A, Vol. 20, Issue 8, pp. 1629-1634 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The conservation equation for a monochromatic field with arbitrary polarization propagating in an inhomogeneous transparent medium is expressed in terms of amplitude and phase variables. The expressions obtained for linearly polarized fields are compared with the results obtained in the eikonal approximation. The electric field wave equation is written in terms of intensity and phase variables. The transport equations for the irradiance and the phase are shown to be particular cases of these derivations. The conservation equation arising from the second-order differential wave equation is shown to be equivalent to that obtained from Poynting’s theorem.

© 2003 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(260.2110) Physical optics : Electromagnetic optics

Original Manuscript: December 13, 2002
Revised Manuscript: March 21, 2003
Manuscript Accepted: March 21, 2003
Published: August 1, 2003

Manuel Fernández-Guasti, José L. Jiménez, Fermı́n Granados-Agustı́n, and Alejandro Cornejo-Rodrı́guez, "Amplitude and phase representation of monochromatic fields in physical optics," J. Opt. Soc. Am. A 20, 1629-1634 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, Vol. XXVIII, E. Wolf, ed. (Elsevier Science, Amsterdam, 1990), pp. 271–359.
  2. S. Mallick, “Common path interferometers,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), pp. 95–122.
  3. T. R. O’Meara, D. M. Pepper, J. O. White, “Applications of nonlinear optical phase conjugation,” in Optical Phase Conjugation, R. Fisher, ed. (Academic, New York, 1983), pp. 537–584.
  4. M. D. Iturbe Castillo, D. Sánchez de la Llave, R. Ramos Garcı́a, L. I. Olivos Pérez, L. A. González, M. Rodrı́guez Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001). [CrossRef]
  5. A. E. Conrady, Applied Optics and Optical Design, Part II (Dover, New York, 1960), p. 614.
  6. A. Cornejo-Rodrı́guez, A. Cordero-Dávila, “Wavefront slope measurements in optical testing,” in Handbook of Optical Engineering, D. Malacara, B. J. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 311–337.
  7. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, Calif., 1966).
  8. A. Cornejo-Rodriguez, “Ronchi test,” in Optical Shop Testing, 2nd ed., D. Malacara, ed. (Wiley, New York, 1992), Chap. 9, pp. 349–350.
  9. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of the phase,” J. Opt. Soc. Am. 72, 1199–1209 (1982). [CrossRef]
  10. P. A. Magaña, F. S. Granados Agustı́n, A. Cornejo Rodrı́guez, “Medición de la fase o frente de onda con un banco nodal,” Rev. Mex. Fis. 46, Suppl. 2, 54–58 (2000).
  11. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402–1403 (1990). [CrossRef] [PubMed]
  12. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996). [CrossRef] [PubMed]
  13. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  14. M. Campos Garcı́a, “Prueba de Roddier: una revisión,” B.Sc. thesis (Universidad National Autónoma de México, Distrito Federal, México, 1995), pp. 48–49.
  15. M. Fernández Guasti, “El teorema de Poynting para campos complejos,” Rev. Mex. Fis. 47, 105–106 (2001).
  16. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 298.
  17. D. Paganin, K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998). [CrossRef]
  18. A. S. Marathay, Elements of Optical Coherence Theory (Wiley, New York, 1982), pp. 278–293.
  19. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), p. 7.
  20. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), pp. 32, 111.
  21. M. R. Teague, “Image formation in terms of the transport equation,” J. Opt. Soc. Am. A 2, 2019–2026 (1985). [CrossRef]
  22. H. S. Green, E. Wolf, “A scalar representation of electromagnetic fields,” Proc. Phys. Soc. London Sect. A LXVI, 1129–1137 (1953). [CrossRef]
  23. M. A. van Dam, R. G. Lane, “Wave-front sensing from defocused images by use of wave-front slopes,” Appl. Opt. 41, 5497–5502 (2002). [CrossRef] [PubMed]
  24. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 626. (In this reference, the opposite sign convention is used in the phase spatial dependence).
  25. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984). [CrossRef]
  26. M. Fernández Guasti, A. Gil-Villegas, “Orthogonal functions invariant for the time-dependent harmonic oscillator,” Phys. Lett. A 292, 243–245 (2002). [CrossRef]
  27. M. Fernández Guasti, R. Diamant, A. Gil-Villegas, “Ermakov equation arising from electromagnetic fields propagating in 1D inhomogeneous media,” Rev. Mex. Fis. 46, 530–535 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited