OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1635–1643

Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams

A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov  »View Author Affiliations


JOSA A, Vol. 20, Issue 8, pp. 1635-1643 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001635


View Full Text Article

Enhanced HTML    Acrobat PDF (790 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two forms of the transverse energy circulation within plane-polarized paraxial light beams are specified: one inherent in wave-front singularities (optical vortices) and the other peculiar to astigmatism and asymmetry of beams with a smooth wave front. As quantitative measures of these energy flow components, the concepts of vortex and asymmetry parts of a beam’s orbital angular momentum are introduced and their definitions are proposed on the basis of beam intensity moments. The properties and physical meaning of these concepts are analyzed, and their use for the study of transformations of optical vortices is demonstrated.

© 2003 Optical Society of America

OCIS Codes
(070.4690) Fourier optics and signal processing : Morphological transformations
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(140.3300) Lasers and laser optics : Laser beam shaping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.2160) Physical optics : Energy transfer

History
Original Manuscript: December 29, 2002
Revised Manuscript: March 24, 2003
Manuscript Accepted: March 24, 2003
Published: August 1, 2003

Citation
A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, "Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams," J. Opt. Soc. Am. A 20, 1635-1643 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-8-1635


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Vasnetsov, K. Staliunas, eds., Optical Vortices (Nova Science, New York, 1999).
  2. L. Allen, M. J. Padgett, M. Babiker, “Orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999). [CrossRef]
  3. M. S. Soskin, M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  4. Yu. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Hilger, London, 1992).
  5. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996). [CrossRef] [PubMed]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  7. M. J. Padgett, L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995). [CrossRef]
  8. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997). [CrossRef]
  9. G. Molina-Terriza, E. M. Wright, L. Torner, “Propagation and control of noncanonical optical vortices,” Opt. Lett. 26, 163–165 (2001). [CrossRef]
  10. A. Ya. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Letters 75, 127–130 (2002). [CrossRef]
  11. A. Ya. Bekshaev, “Mechanical properties of the light wave with phase singularity,” in Fourth International Conference on Correlation Optics, O. V. Angelsky, ed., Proc. SPIE3904, 131–139 (1999). [CrossRef]
  12. A. Ya. Bekshaev, A. Yu. Popov, “Measurement of the orbital angular momentum of an optical beam with the help of space-angle intensity moments,” in Selected Papers from Fifth International Conference on Correlation Optics, O. V. Angelsky, ed., Proc. SPIE4607, 90–98 (2002). [CrossRef]
  13. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  14. Yu. A. Anan’ev, A. Ya. Bekshaev, “Theory of intensity moments for arbitrary light beams,” Opt. Spectrosc. 76, 558–568 (1994).
  15. E. G. Abramochkin, V. G. Volostnikov, “Light beams with phase singularities: some aspects of analysis and synthesis,” in 2nd International Conference on Singular Optics (Optical Vortices): Fundamentals and Applications, M. S. Soskin, M. V. Vasnetsov, eds., Proc. SPIE4403, 43–48 (2001). [CrossRef]
  16. A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (4) ( 2002). [CrossRef] [PubMed]
  17. G. Molina-Terriza, J. P. Torres, L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 013601 (4) ( 2002). [CrossRef] [PubMed]
  18. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (4) ( 2002). [CrossRef] [PubMed]
  19. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  20. A. Ya. Bekshaev, “Intensity moments of the laser beam formed by superposition of Hermit-Gaussian modes,” Fotoelektronika (Odessa) 8, 22–25 (1999); in Russian.
  21. R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960).
  22. A. E. Siegman, “Handbook of laser beam propagation and beam quality formulas using the spatial-frequency and intensity-moment analysis,” (draft version, 7/2/1991). Manuscript available from A. E. Siegman, Stanford University, 550 Junipero Serra Blvd., Stanford, Calif. 94305; e-mail, siegman@stanford.edu.
  23. I. Freund, N. Shvartsman, V. Freilikher, “Optical dislocation network in highly random media,” Opt. Commun. 101, 247–264 (1993). [CrossRef]
  24. M. S. Soskin, M. V. Vasnetsov, I. V. Basistiy, “Optical wavefront dislocations,” in International Conference on Holography and Correlation Optics, O. V. Angelsky, ed., Proc. SPIE2647, 57–62 (1995). [CrossRef]
  25. A. Ya. Bekshaev, A. Yu. Popov, “Optical system for Laguerre-Gaussian/Hermite-Gaussian mode conversion,” in 2nd International Conference on Singular Optics (Optical Vortices): Fundamentals and Applications, M. S. Soskin, M. V. Vasnetsov, eds., Proc. SPIE4403, 296–301 (2001).
  26. I. V. Basistiy, L. V. Kreminskaya, I. G. Marienko, M. S. Soskin, M. V. Vasnetsov, “Experimental observation of rotation and diffraction of a “singular” light beam,” in International Conference on Singular Optics, M. S. Soskin, ed., Proc. SPIE3487, 34–38 (1998). [CrossRef]
  27. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993). [CrossRef]
  28. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993). [CrossRef]
  29. N. S. Kazak, N. A. Khilo, A. A. Ryzhevich, “Generation of Bessel light beams under the conditions of internal conical refraction,” Quantum Electron. 29, 1020–1024 (1999). [CrossRef]
  30. J. Arlt, T. Hitomi, K. Dholakia, “Atom guiding along Laguerre-Gaussian and Bessel light beams,” Appl. Phys. B 71, 549–554 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited