OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1739–1746

Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm

Feng Di, Yan Yingbai, Jin Guofan, Tan Qiaofeng, and Haitao Liu  »View Author Affiliations


JOSA A, Vol. 20, Issue 9, pp. 1739-1746 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001739


View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a rigorous electromagnetic design of two-dimensional and finite-aperture diffractive optical elements (DOEs) that employs an effective iterative optimization algorithm in conjunction with a rigorous electromagnetic computational model: the finite-difference time-domain method. The iterative optimization process, the finite-difference time-domain method, and the angular spectrum propagation method are discussed in detail. Without any approximation based on the scalar theory, the algorithm can produce rigorous design results, both numerical and graphical, with fast convergence, reasonable computational cost, and good design quality. Using our iterative algorithm, we designed a diffractive cylindrical lens and a 1-to-2-beam fanner for normal-incidence TE-mode illumination, thus showing that the optimization algorithm is valid and competent for rigorously designing diffractive optical elements. Concerning the problem of fabrication, we also evaluated the performance of the DOE when the DOE profile is discrete.

© 2003 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(230.3990) Optical devices : Micro-optical devices

History
Original Manuscript: December 20, 2002
Revised Manuscript: March 31, 2003
Manuscript Accepted: March 31, 2003
Published: September 1, 2003

Citation
Feng Di, Yan Yingbai, Jin Guofan, Tan Qiaofeng, and Haitao Liu, "Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm," J. Opt. Soc. Am. A 20, 1739-1746 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-9-1739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Feature issue, “Diffractive optics applications,” Appl. Opt. 34, 2399–2559 (1995). [CrossRef]
  2. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
  3. N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999). [CrossRef]
  4. B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994). [CrossRef]
  5. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996). [CrossRef]
  6. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998). [CrossRef]
  7. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modeling-diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995). [CrossRef]
  8. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  9. E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999). [CrossRef]
  10. D. W. Prather, S. Shi, “Formulation and application ofthe finite-difference time-domain method for the analysis of axially symmetric DOEs,” J. Opt. Soc. Am. A 16, 1131–1142 (1999). [CrossRef]
  11. L. Gur, D. Mendlovic, “Diffraction limited domain flat-top generator,” Opt. Commun. 145, 237–248 (1998). [CrossRef]
  12. D. W. Prather, J. N. Mait, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  13. J. Jiang, G. P. Nordin, “A rigorous unidirectional method for designing finite aperture diffractive optical elements,” Opt. Express 7, 237–242 (2000). [CrossRef] [PubMed]
  14. M. E. Testorf, M. A. Fiddy, “Efficient optimization of diffractive optical elements based on rigorous diffraction models,” J. Opt. Soc. Am. A 18, 2908–2914 (2001). [CrossRef]
  15. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  16. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holography,” Opt. Eng. 19, 297–306 (1980). [CrossRef]
  17. S. Buhling, F. Wyrowski, “Improved transmission design algorithms by utilizing variable-strength projections,” J. Mod. Opt. 49, 1871–1892 (2002). [CrossRef]
  18. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
  20. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  21. G. S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge U. Press, Cambridge, UK, 1997).
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  23. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef] [PubMed]
  24. E. G. Johnson, M. A. G. Abushagur, “Microgenetic-algorithm optimization methods applied to dielectric gratings,” J. Opt. Soc. Am. A 12, 1152–1160 (1995). [CrossRef]
  25. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  26. D. W. Prather, D. Pustai, Shouyuan Shi, “Performance of multilevel diffractive lenses as a function of f-number,” Appl. Opt. 40, 207–210 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited