OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1771–1784

Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories

Hideki T. Miyazaki, Hiroshi Miyazaki, and Kenjiro Miyano  »View Author Affiliations


JOSA A, Vol. 20, Issue 9, pp. 1771-1784 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001771


View Full Text Article

Enhanced HTML    Acrobat PDF (1820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40° to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by simple two-wave interference models.

© 2003 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.1510) Geometric optics : Propagation methods
(260.2110) Physical optics : Electromagnetic optics
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: November 4, 2002
Revised Manuscript: April 7, 2003
Manuscript Accepted: April 7, 2003
Published: September 1, 2003

Citation
Hideki T. Miyazaki, Hiroshi Miyazaki, and Kenjiro Miyano, "Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-9-1771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).
  2. J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres, part I—multiple expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–390 (1971). [CrossRef]
  3. B. Peterson, S. Ström, “T matrix for electromagnetic scattering from an arbitrary number of scatterers and representation of E(3),” Phys. Rev. D 8, 3661–3678 (1973). [CrossRef]
  4. J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982). [CrossRef]
  5. F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol. Sci. Technol. 3, 227–235 (1984). [CrossRef]
  6. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I: Linear chains,” Opt. Lett. 13, 90–92 (1988). [CrossRef] [PubMed]
  7. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II: Clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988). [CrossRef] [PubMed]
  8. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991). [CrossRef]
  9. J. P. Barton, W. Ma, S. A. Schaub, D. R. Alexander, “Electromagnetic field for a beam incident on two adjacent spherical particles,” Appl. Opt. 30, 4706–4715 (1991). [CrossRef] [PubMed]
  10. Y.-L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995). [CrossRef] [PubMed]
  11. M. P. Ioannidou, N. C. Skaropoulos, D. P. Chrissoulidis, “Study of interactive scattering by clusters of spheres,” J. Opt. Soc. Am. A 12, 1782–1789 (1995). [CrossRef]
  12. K. Ohtaka, “Energy band of photons and low-energy photon diffraction,” Phys. Rev. B 19, 5057–5067 (1979). [CrossRef]
  13. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  14. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  15. R. T. Wang, J. M. Greenberg, D. W. Schuerman, “Experimental results of dependent light scattering by two spheres,” Opt. Lett. 6, 543–545 (1981). [CrossRef] [PubMed]
  16. G. W. Kattawar, C. E. Dean, “Electromagnetic scattering from two dielectric spheres: comparison between theory and experiment,” Opt. Lett. 8, 48–50 (1983). [CrossRef] [PubMed]
  17. K. A. Fuller, G. W. Kattawar, R. T. Wang, “Electromagnetic scattering from two dielectric spheres: further comparisons between theory and experiment,” Appl. Opt. 25, 2521–2529 (1986). [CrossRef] [PubMed]
  18. Y.-L. Xu, R. T. Wang, “Electromagnetic scattering by an aggregate of spheres: theoretical and experimental study of the amplitude scattering matrix,” Phys. Rev. E 58, 3931–3948 (1998). [CrossRef]
  19. K. A. Fuller, “Optical resonances and two-spherical systems,” Appl. Opt. 30, 4716–4731 (1991). [CrossRef] [PubMed]
  20. H. T. Miyazaki, H. Miyazaki, K. Miyano, “Anomalous scattering from dielectric bispheres in the specular direction,” Opt. Lett. 27, 1208–1210 (2002). [CrossRef]
  21. H. Miyazaki, Y. Jimba, “Ab initio tight-binding description of morphology-dependent resonance in a bisphere,” Phys. Rev. B 62, 7976–7997 (2000). [CrossRef]
  22. gmm01f.f at www.astro.ufl.edu/~xu .
  23. Y.-L. Xu, B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001). [CrossRef]
  24. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  25. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  26. In Refs. 15-18the ratio of the rigorous solution to the NIS solution was used to show the magnitude of specular resonance. However, in this paper we discuss their difference rather than their ratio. This is because the ratio can have a meaninglessly large value when the NIS amplitude is very small and is not a good measure of the magnitude of the specular resonance, in which the brightness of the ray rather than the degree of enhancement is important.
  27. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).
  28. H. M. Nussenzveig, “The theory of the rainbow,” Sci. Am. 236, 116–127 (1977). [CrossRef]
  29. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, UK, 1980).
  30. Speaking exactly, E1and E2are true caustics for n≤1.50but not caustics for n>1.50.However, since dθ/dbhas a value close to zero, and a large number of rays about b=0contribute to this trajectory, obvious structures can still be seen at n=1.58[Figs. 2(f) and (g) ]. Moreover, each E1and E2is generally composed of two finer structures at n<1.50.
  31. R. T. Wang, H. C. van de Hulst, “Rainbows: Mie computations and the Airy approximation,” Appl. Opt. 30, 106–117 (1991). [CrossRef] [PubMed]
  32. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979). [CrossRef]
  33. D. K. Lynch, P. Schwartz, “Rainbows and fogbows,” Appl. Opt. 30, 3415–3420 (1991). [CrossRef] [PubMed]
  34. R. L. Lee, “Mie theory, Airy theory, and the natural rainbow,” Appl. Opt. 37, 1506–1519 (1998). [CrossRef]
  35. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  36. A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977). [CrossRef]
  37. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980). [CrossRef]
  38. H. Yukawa, S. Arnold, K. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999). [CrossRef]
  39. H. Ishikawa, H. Tamaru, K. Miyano, “Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate,” Opt. Lett. 24, 643–645 (1999). [CrossRef]
  40. H. Ishikawa, H. Tamaru, K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000). [CrossRef]
  41. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623–4626 (1999). [CrossRef]
  42. J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres, part II—numerical and experimental results,” IEEE Trans. Antennas Propag. AP-19, 391–400 (1971). [CrossRef]
  43. A. Gotoh, K. Kamiya, F. Ikazaki, “Preparation of nano-sized complex particles regulated by the number of particle constituents,” J. Mater. Sci. Lett. 17, 1195–1197 (1998). [CrossRef]
  44. Y. Yin, Y. Xia, “Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures,” Adv. Mater. 13, 267–271 (2001). [CrossRef]
  45. W. L. Vos, R. Spirk, A. van Blaaderen, A. Imhof, A. Lagendijk, G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231–16235 (1996). [CrossRef]
  46. H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997). [CrossRef]
  47. A. van Blaaderen, R. Ruel, P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997). [CrossRef]
  48. H. Miyazaki, K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58, 6920–6937 (1998). [CrossRef]
  49. T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, T. Ataka, “Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes,” Opt. Lett. 22, 489–491 (1997). [CrossRef] [PubMed]
  50. T. Yamasaki, T. Tsutsui, “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916–5921 (1999). [CrossRef]
  51. S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, A. Fujishima, “Light propagation in composite two-dimensional arrays of polystyrene spherical particles,” Langmuir 16, 636–642 (2000). [CrossRef]
  52. M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, K. Takeda, “Optical modes in two-dimensionally ordered dielectric spheres,” Jpn. J. Appl. Phys. 39, 1747–1751 (2000). [CrossRef]
  53. R. Shimada, Y. Komori, T. Koda, T. Fujimura, T. Itoh, K. Ohtaka, “Photonic band effect in ordered polystyrene particle layers,” Mol. Cryst. Liq. Cryst. 349, 5–8 (2000). [CrossRef]
  54. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87, 7152–7158 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited