OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1771–1784

Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories

Hideki T. Miyazaki, Hiroshi Miyazaki, and Kenjiro Miyano  »View Author Affiliations


JOSA A, Vol. 20, Issue 9, pp. 1771-1784 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001771


View Full Text Article

Acrobat PDF (1820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40° to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by simple two-wave interference models.

© 2003 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.1510) Geometric optics : Propagation methods
(260.2110) Physical optics : Electromagnetic optics
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

Citation
Hideki T. Miyazaki, Hiroshi Miyazaki, and Kenjiro Miyano, "Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-9-1771

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited