OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1792–1803

Theoretical model of optical coherence tomography for system optimization and characterization

Yinqi Feng, Ruikang K. Wang, and James B. Elder  »View Author Affiliations


JOSA A, Vol. 20, Issue 9, pp. 1792-1803 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001792


View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed analytical model to describe optical coherence tomography (OCT) systems, which considers the propagation of the optical field within a scattering medium in the framework of the extended Huygens–Fresnel principle. The model includes use of the discrete-particle model and the fractal approach in treating biological tissue as being packed with scattering particles with a power-law distribution. In contrast to previous models, an imaginary lens proximal to the tissue surface is introduced that approximates the real focusing lens in the sample arm of the OCT system. This treatment avoids the consideration of backscattering light as traveling in the free space between the focusing lens and the tissue surface before mixing with the reference beam. Experiments on tissue phantoms were carried out to verify the validity of this model.

© 2003 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6930) Medical optics and biotechnology : Tissue
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: September 30, 2002
Revised Manuscript: May 22, 2003
Manuscript Accepted: May 22, 2003
Published: September 1, 2003

Citation
Yinqi Feng, Ruikang K. Wang, and James B. Elder, "Theoretical model of optical coherence tomography for system optimization and characterization," J. Opt. Soc. Am. A 20, 1792-1803 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-9-1792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Imaging of macular disease with optical coherence tomography,” Ophthalmology 102, 217–229 (1995). [CrossRef] [PubMed]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002). [CrossRef] [PubMed]
  4. K. Kobayashi, J. A. Izzat, M. D. Kulkarni, J. Willis, M. V. Sivak, “High resolution cross sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998). [CrossRef] [PubMed]
  5. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000). [CrossRef]
  6. U. Seitz, J. Freund, S. Jaeckle, E. Feldchtein, S. Bohnacker, F. Thonke, N. Gladkova, B. Brand, S. Schroder, N. Soehendra, “First in vivo optical coherence tomography in the human bile duct,” Endoscopy 33, 1018–1021 (2001). [CrossRef] [PubMed]
  7. R. K. Wang, J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissues,” Lasers Surg. Med. 30, 201–208 (2002). [CrossRef] [PubMed]
  8. B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998). [CrossRef]
  9. J. M. Schmitt, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence tomography,” Dermatology 191, 93–98 (1995). [CrossRef]
  10. J. Welzel, E. Lankenau, R. Birngruber, R. Engehardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997). [CrossRef]
  11. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, J. E. S. Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064 (2002). [CrossRef] [PubMed]
  12. R. K. Wang, J. B. Elder, “High resolution optical tomographic imaging of soft biological tissues,” Laser Phys. 12, 611–616 (2002).
  13. J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high speed and high resolution optical coherence tomography,” Ann. N.Y. Acad. Sci. 838, 95–107 (1998). [CrossRef]
  14. J. M. Schmitt, A. Knüttle, A. S. Gandjbakhche, R. F. Bonner, “Optical characterization of dense tissue using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska , ed., Proc. SPIE1889, 197–211 (1993). [CrossRef]
  15. Y. Pan, R. Birngruber, R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997). [CrossRef] [PubMed]
  16. Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995). [CrossRef] [PubMed]
  17. A. Knüttel, R. Schork, D. Böcker, “Analytical modeling of spatial resolution curves in turbid media acquired with optical coherence tomography (OCT),” in Three-Dimensional Microscopy—Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 258–270 (1996). [CrossRef]
  18. J. M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  19. L. Thrane, H. T. Yura, P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresenel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000). [CrossRef]
  20. L. Thrane, H. T. Yura, P. E. Andersen, “Optical coherence tomography: new analytical model and shower curtain effect,” in Saratov Fall Meeting ’99: Optical Technologies in Biophysics and Medicine, V. V. Tuchin, D. A. Zimnyakov, A. B. Pravdin, eds., Proc. SPIE4001, 202–208 (2000). [CrossRef]
  21. P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jørgensen, “Modeling the optical coherence tomography geometry using the extended Huygens–Fresnel principle and Monto Carlo simulations,” in Optical Pulse and Beam Propagation II, Y. B. Band, ed., Proc. SPIE3927, 166–178 (2000). [CrossRef]
  22. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  23. R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” J. Mod. Opt. 47, 103–120 (2000). [CrossRef]
  24. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964), Chap. 8.
  25. R. F. Lutomirski, H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef] [PubMed]
  26. H. T. Yura, “Signal-to-noise ratio of a heterodyne lidar system in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  27. H. T. Yura, S. G. Hanson, “Effects of receiver optics contamination on the performance of laser velocimeter systems,” J. Opt. Soc. Am. A 13, 1891–1902 (1996). [CrossRef]
  28. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1981).
  29. B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996). [CrossRef]
  30. Valery Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, Washington, 2000).
  31. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  32. R. K. Wang, X. Xu, V. V. Tuchin, J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001). [CrossRef]
  33. V. V. Tuchin, X. Xu, R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and appregation of immersed blood,” Appl. Opt. 41, 258–271 (2002). [CrossRef] [PubMed]
  34. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998). [CrossRef]
  35. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited