OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1804–1811

Mueller calculus of polarization change in the cube-corner retroreflector

Sergio E. Segre and Vincenzo Zanza  »View Author Affiliations

JOSA A, Vol. 20, Issue 9, pp. 1804-1811 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical ray properties of the cube-corner retroreflector (CCR) are first recalled. The change of polarization of the radiation due to CCR reflection is then derived by use of the Mueller matrix calculus. It is found that, in general, when the faces are not ideal reflectors, the useful cross section of the CCR consists of six zones, each of which produces a different change of polarization, i.e., it gives a different Mueller matrix. All the Mueller matrices depend on wavelength. The results are quite general and can be used directly also for partially polarized radiation.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

Original Manuscript: January 24, 2003
Revised Manuscript: March 31, 2003
Manuscript Accepted: March 31, 2003
Published: September 1, 2003

Sergio E. Segre and Vincenzo Zanza, "Mueller calculus of polarization change in the cube-corner retroreflector," J. Opt. Soc. Am. A 20, 1804-1811 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Zhou, A. Alfrey, L. W. Casperson, “Modes of a laser resonator with a retroreflecting corner cube mirror,” Appl. Opt. 21, 1670–1674 (1982). [CrossRef] [PubMed]
  2. J. Kauppinen, V. M. Horneman, “Large aperture cube-corner interferometer with a resolution of 0.001 cm-1,” Appl. Opt. 30, 2575–2578 (1991). [CrossRef] [PubMed]
  3. J. Kauppinen, P. Saarinen, “Line-shape distortion in misaligned cube-corner interferometers,” Appl. Opt. 31, 69–74 (1992). [CrossRef] [PubMed]
  4. P. Haschberger, V. Tank, “Optimization of a Michelson interferometer with a rotating retroreflector in optical design, spectral resolution, and optical throughput,” J. Opt. Soc. Am. A 10, 2338–2345 (1993). [CrossRef]
  5. A. Minato, N. Sugimoto, “Design of a four-element, hollow-cube-corner retroreflector for satellites by use of a genetic algorithm,” Appl. Opt. 37, 438–442 (1998). [CrossRef]
  6. N. Sugimoto, N. Koga, I. Matsui, Y. Sasano, A. Minato, K. Ozawa, Y. Saito, A. Nomura, T. Aoki, T. Itabe, H. Kunimori, I. Murata, H. Fukunishi, “Earth-satellite–Earth-laser, long-path absorption experiment using the Retroreflector in Space (RIS) on the Advanced Earth Observing Satellite (ADEOS),” J. Opt. A Pure Appl. Opt. 1, 201–209 (1999). [CrossRef]
  7. A. Minato, S. Ozawa, N. Sugimoto, “Optical design of a hollow-cube-corner retroreflector for a geosynchronous satellite,” Appl. Opt. 40, 1459–1463 (2001). [CrossRef]
  8. J. R. R. Mayer, “Polarization optics design for a laser tracking triangulation instrument based on dual-axis scanning and a retroreflective target,” Opt. Eng. 32, 3316–3326 (1993). [CrossRef]
  9. B. C. Park, T. B. Eom, M. S. Chung, “Polarization properties of cube-corner retroreflectors and their effects on signal strength and nonlinearity in heterodyne inteferometers,” Appl. Opt. 35, 4372–4380 (1996). [CrossRef] [PubMed]
  10. C. C. Shih, “Depolarization effect in a resonator with corner-cube reflectors,” J. Opt. Soc. Am. A 13, 1378–1384 (1996). [CrossRef]
  11. D. C. O’Brien, G. E. Faulkner, D. J. Edwards, “Optical properties of a retroreflecting sheet,” Appl. Opt. 38, 4137–4144 (1999). [CrossRef]
  12. J. Yuan, S. Chang, S. Li, Y. Zhang, “Design and fabrication of micro-cube-corner array retroreflectors,” Opt. Commun. 209, 75–83 (2002). [CrossRef]
  13. R. T. Snider, T. N. Carlstrom, T. D. Hodapp, F. C. Jobes, C. H. Ma, W. A. Peebles, “Conceptual design of a density measurement on ITER using interferometry and Faraday rotation techniques,” (General Atomics, San Diego, Calif., 1996).
  14. F. C. Jobes, D. K. Mansfield, “Midplane Faraday rotation: a densitometer for large tokamaks,” Rev. Sci. Instrum. 63, 5154–5156 (1992). [CrossRef]
  15. P. Innocente, S. Martini, A. Canton, L. Tasinato, “Upgrade of the RFX CO2 interferometer using in-vessel optics for extended edge resolution,” Rev. Sci. Instrum. 68, 694–697 (1997). [CrossRef]
  16. R. T. Snider, T. N. Carlstrom, T. D. Hodapp, F. C. Jobes, W. A. Peebles, “Application of interferometry and Faraday rotation techniques for density measurements on the next generation of tokamaks,” Rev. Sci. Instrum. 68, 728–731 (1997). [CrossRef]
  17. A. J. H. Donné, T. Edlington, E. Joffrin, H. R. Koslowski, C. Nieswand, S. E. Segre, P. E. Stott, C. Walker, “Poloidal polarimeter system for current density measurements in ITER,” Rev. Sci. Instrum. 70, 726–729 (1999). [CrossRef]
  18. M. A. Acharekar, “Derivation of internal incidence angles and coordinate transformations between internal reflections for corner reflectors at normal incidence,” Opt. Eng. 23, 669–674 (1984). [CrossRef]
  19. P. I. Lamekin, “Intrinsic polarization states of corner reflectors,” Sov. J. Opt. Technol. 54, 658–661 (1987).
  20. M. A. Player, “Polarization properties of a cube-corner reflector,” J. Mod. Opt. 35, 1813–1820 (1988). [CrossRef]
  21. M. S. Scholl, “Ray trace through a corner-cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12, 1589–1592 (1995). [CrossRef]
  22. J. Liu, R. M. A. Azzam, “Polarization properties of corner-cube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553–1559 (1997). [CrossRef] [PubMed]
  23. J. Liu, R. M. A. Azzam, “Corner-cube, four-detector photopolarimeter,” Opt. Laser Technol. 29, 233–238 (1997). [CrossRef]
  24. S. E. Segre, V. Zanza, “Polarization properties of the cube-corner retroreflector using Mueller calculus,” (ENEA, Frascati, Italy, 2002).
  25. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999).
  26. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, Oxford, UK, 1971).
  27. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1979).
  28. E. Collett, Polarized Light: Fundamentals and Applications (Dekker, New York, 1992).
  29. S. E. Segre, “Evolution of the polarization state for radiation propagating in a nonuniform, birefringent, optically active, and dichroic medium: the case of a magnetized plasma,” J. Opt. Soc. Am. A 17, 95–100 (2000). [CrossRef]
  30. M. Nagatsu, N. Takada, T. Tsukishima, M. Shimada, “Reflectivity measurements of graphite in the infrared and submillimeter wave regions,” J. Nucl. Mater. 209, 204–211 (1994). [CrossRef]
  31. T. Nishitani, E. Ishitsuka, T. Kakuta, H. Sagawa, K. Noda, Y. Oyama, T. Iida, T. Sugie, H. Kawamura, S. Kasai, “Japanese contribution to ITER task of irradiation tests on diagnostics components,” Fusion Eng. Des. 42, 443–448 (1998). [CrossRef]
  32. V. Voitsenya, A. F. Bardamid, V. L. Berezhnyj, Y. N. Borisenko, V. I. Gritsyna, V. T. Gritsyna, V. G. Konovalov, V. L. Ocheretenko, D. V. Orlinsky, R. Pavlichenko, L. V. Poperenko, V. Ruzhitskij, V. Rybalko, A. N. Shapoval, A. I. Skibenko, N. V. Vinnichenko, K. I. Yakimov, “Imitation of fusion reactor environment effects on the inner elements of spectroscopical, mm and sub-mm diagnostics,” in Diagnostics for Experimental Thermonuclear Reactors, P. E. Stott, G. Gorini, E. Sindoni, eds. (Plenum, New York, 1996), pp. 61–70.
  33. V. S. Voitsenya, V. G. Konovalov, A. F. Shtan’, S. I. Solodovchenko, M. F. Becker, A. F. Bardamid, K. I. Yakimov, V. T. Gritsyna, D. V. Orlinskij, “Some problems of the material choice for the first mirrors of plasma diagnostics in a fusion reactor,” Rev. Sci. Instrum. 70, 790–793 (1999). [CrossRef]
  34. V. S. Voitsenya, A. E. Costley, V. Bandourko, A. Bardamid, V. Bondarenko, Y. Hirooka, S. Kasai, N. Klassen, V. Konovalov, M. Nagatsu, K. Nakamura, D. Orlinskij, F. Orsitto, L. Poperenko, S. Solodovchenko, A. Stan’, T. Sugie, M. Taniguchi, M. Vinnichenko, K. Vukolov, S. Zvonkov, “Diagnostic first mirrors for burning plasma experiments,” Rev. Sci. Instrum. 72, 475–482 (2001). [CrossRef]
  35. F. P. Orsitto, D. D. Bulgaro, M. Di Fino, A. Maiolo, M. Montecchi, E. Nichelatti, C. Gowers, P. Nielsen, “Optical characterization of plasma-facing mirrors for a Thomson scattering system of a burning plasma experiment,” Rev. Sci. Instrum. 72, 540–544 (2001). [CrossRef]
  36. Handbook of Optical Constants of SolidsE. D. Palik, ed. (Academic, New York, 1985).
  37. CRC Handbook of Chemistry and Physics, J. H. Weaver, ed. (CRC, Ann Arbor, Mich., 1992), chap. Optical Properties of Metals.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited