OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1812–1817

Hyperbolic reflections as fundamental building blocks for multilayer optics

Alberto G. Barriuso, Juan J. Monzón, Luis L. Sánchez-Soto, and José F. Cariñena  »View Author Affiliations

JOSA A, Vol. 20, Issue 9, pp. 1812-1817 (2003)

View Full Text Article

Acrobat PDF (353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We re-elaborate on the basic properties of lossless multilayers by using bilinear transformations. We study some interesting properties of the multilayer transfer function in the unit disk, showing that hyperbolic geometry turns out to be an essential tool for understanding multilayer action. We use a simple trace criterion to separate multilayers into three classes that represent rotations, translations, or parallel displacements. Moreover, we show that these three actions can be decomposed as a product of two reflections in hyperbolic lines. Therefore, we conclude that hyperbolic reflections can be considered as the basic pieces for a deeper understanding of multilayer optics.

© 2003 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.4170) Optical devices : Multilayers

Alberto G. Barriuso, Juan J. Monzón, Luis L. Sánchez-Soto, and José F. Cariñena, "Hyperbolic reflections as fundamental building blocks for multilayer optics," J. Opt. Soc. Am. A 20, 1812-1817 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. F. Schutz, Geometrical Methods of Mathematical Physics (Cambridge U. Press, Cambridge, UK, 1997).
  2. J. J. Monzón and L. L. Sánchez-Soto, “Lossless multilayers and Lorentz transformations: more than an analogy,” Opt. Commun. 162, 1–6 (1999).
  3. J. J. Monzón and L. L. Sánchez-Soto, “Fully relativisticlike formulation of multilayer optics,” J. Opt. Soc. Am. A 16, 2013–2018 (1999).
  4. H. S. M. Coxeter, Introduction to Geometry (Wiley, New York, 1969).
  5. T. Yonte, J. J. Monzón, L. L. Sánchez-Soto, J. F. Cariñena, and C. López-Lacasta, “Understanding multilayers from a geometrical viewpoint,” J. Opt. Soc. Am. A 19, 603–609 (2002).
  6. J. J. Monzón, T. Yonte, L. L. Sánchez-Soto, and J. F. Cariñena, “Geometrical setting for the classification of multilayers,” J. Opt. Soc. Am. A 19, 985–991 (2002).
  7. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).
  8. D. Han, Y. S. Kim, and M. E. Noz, “Polarization optics and bilinear representations of the Lorentz group,” Phys. Lett. A 219, 26–32 (1996).
  9. H. Kogelnik, “Imaging of optical modes–resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  10. M. Nakazawa, J. H. Kubota, A. Sahara, and K. Tamura, “Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission,” IEEE J. Quantum Electron. QE34, 1075–1081 (1998).
  11. R. Melter, A. Rosenfeld, and P. Bhattacharya, Vision Geometry (American Mathematical Society, Providence, R.I., 1991).
  12. K. A. Dunn, “Poincaré group as reflections in straight lines,” Am. J. Phys. 49, 52–55 (1981).
  13. When ambient (0) and substrate (m+1) media are different, the angles θ0 and θm+1 are conected by Snell’s law n0 sin θ0 =nm+1 sin θm+1, where nj denotes the refractive index of the j th medium.
  14. J. J. Monzón and L. L. Sánchez-Soto, “Origin of the Thomas rotation that arises in lossless multilayers,” J. Opt. Soc. Am. A 16, 2786–2792 (1999).
  15. J. J. Monzón and L. L. Sánchez-Soto, “A simple optical demonstration of geometric phases from multilayer stacks: the Wigner angle as an anholonomy,” J. Mod. Opt. 48, 21–34 (2001).
  16. D. Pedoe, A Course of Geometry (Cambridge U. Press, Cambridge, UK, 1970).
  17. A. Mischenko and A. Fomenko, A Course of Differential Geometry and Topology (Mir, Moscow, 1988), Sect. 1.4.
  18. L. L. Sánchez-Soto, J. J. Monzón, T. Yonte, and J. F. Cariñena, “Simple trace criterion for classification of multilayers,” Opt. Lett. 26, 1400–1402 (2001).
  19. J. J. Monzón, T. Yonte, and L. L. Sánchez-Soto, “Basic factorization for multilayers,” Opt. Lett. 26, 370–372 (2001).
  20. B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited