OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 9 — Sep. 1, 2003
  • pp: 1818–1826

Basic elliptical Gaussian wave and beam in a uniaxial crystal

S. R. Seshadri  »View Author Affiliations

JOSA A, Vol. 20, Issue 9, pp. 1818-1826 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic beams in a uniaxial crystal are treated with emphasis on the extraordinary mode. A virtual source that generates a basic elliptical Gaussian wave propagating obliquely to the optic axis is identified. An exact expression is obtained for this basic elliptical Gaussian wave that simplifies to the corresponding basic elliptical Gaussian beam in the appropriate limit. In the direction of amplitude propagation, the paraxial result becomes identical to the exact result and the sum of all the nonparaxial contributions vanish. The characteristics of the basic elliptical Gaussian beam are illustrated with a numerical example. From the spectral representation of the basic Gaussian wave, the first three orders of nonparaxial corrections for the basic elliptical Gaussian beam are determined. The nonparaxial results reduce correctly to those of the fundamental Gaussian beam in an isotropic medium.

© 2003 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(260.1180) Physical optics : Crystal optics
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

Original Manuscript: January 31, 2003
Revised Manuscript: April 24, 2003
Manuscript Accepted: April 24, 2003
Published: September 1, 2003

S. R. Seshadri, "Basic elliptical Gaussian wave and beam in a uniaxial crystal," J. Opt. Soc. Am. A 20, 1818-1826 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960), pp. 315–324.
  2. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999), Chap. 15.
  3. L. B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (IEEE Press, Piscataway, N.J., 1994), pp. 740–820.
  4. S. Y. Shin, L. B. Felsen, “Gaussian beams in anisotropic media,” Appl. Phys. 5, 239–250 (1974). [CrossRef]
  5. J. A. Fleck, M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73, 920–926 (1983). [CrossRef]
  6. S. R. Seshadri, “Paraxial wave equation for the extraordinary-mode beam in a uniaxial crystal,” J. Opt. Soc. Am. A 18, 2628–2629 (2001). [CrossRef]
  7. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1967), Chap. 6.
  8. A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorialtheory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18, 1656–1661 (2001). [CrossRef]
  9. G. Cincotti, A. Ciattoni, C. Palma, “Hermite–Gauss beams in uniaxially anisotropic crystals,” IEEE J. Quantum Electron. 37, 1517–1524 (2002). [CrossRef]
  10. A. Ciattoni, G. Cincotti, C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19, 792–796 (2002). [CrossRef]
  11. G. Cincotti, A. Ciattoni, C. Palma, “Laguerre–Gauss and Bessel–Gauss beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680–1688 (2002). [CrossRef]
  12. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684–685 (1971). [CrossRef]
  13. L. B. Felsen, “Evanescent waves,” J. Opt. Soc. Am. 66, 751–760 (1976). [CrossRef]
  14. L. B. Felsen, “On the use of refractive index diagrams for source-excited anisotropic regions,” J. Res. Natl. Bur. Stand. Sect. D 69, 155–169 (1965). [CrossRef]
  15. S. R. Seshadri, “Virtual source for a Laguerre–Gauss beam,” Opt. Lett. 27, 1872–1874 (2002). [CrossRef]
  16. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), pp. 263–287.
  17. M. Couture, P. A. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981). [CrossRef]
  18. T. Takenaka, M. Yokota, O. Fukumitsu, “Propagation for light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited