OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 149–159

Measurements of radiation characteristics of fused quartz containing bubbles

Dominique Baillis, Laurent Pilon, Harifidy Randrianalisoa, Rafael Gomez, and Raymond Viskanta  »View Author Affiliations


JOSA A, Vol. 21, Issue 1, pp. 149-159 (2004)
http://dx.doi.org/10.1364/JOSAA.21.000149


View Full Text Article

Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report experimental measurement of radiation characteristics of fused quartz containing bubbles over the spectral region from 1.67 to 3.5 μm. The radiation characteristics were retrieved by an inverse method that minimizes the quadratic difference between the measured and the calculated spectral bidirectional transmittance and reflectance for different sample thicknesses. The theoretical spectral transmittances and reflectances were computed by solving the one-dimensional radiative transfer equation by the discrete-ordinates method for a nonemitting, homogeneous, and scattering medium. The results of the inversion were shown to be independent of the sample thickness for samples thicker than 3 mm and clearly demonstrate that bubbles have an effect on the radiation characteristics of fused quartz.

© 2004 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(130.3060) Integrated optics : Infrared
(160.0160) Materials : Materials
(160.2750) Materials : Glass and other amorphous materials
(160.4760) Materials : Optical properties
(290.0290) Scattering : Scattering

Citation
Dominique Baillis, Laurent Pilon, Harifidy Randrianalisoa, Rafael Gomez, and Raymond Viskanta, "Measurements of radiation characteristics of fused quartz containing bubbles," J. Opt. Soc. Am. A 21, 149-159 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-1-149


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).
  2. D. Baillis and J.-F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quant. Spectrosc. Radiat. Transf. 67, 327–363 (2000).
  3. J. Kuhn, H.-P. Ebert, M. C. Arduini-Schuster, D. Büttner, and J. Fricke, “Thermal transport in polystyrene and polyurethane foam insulations,” Int. J. Heat Mass Transfer 35, 1795–1801 (1992).
  4. G. Eeckhaut and A. Cunningham, “The elimination of radiative heat transfer in fine celled PU rigid foams,” J. Cell. Plastics 32, 528–552 (1996).
  5. M. Schuetz and L. Glicksman, “A basic study of heat transfer through foam insulation,” J. Cell. Plastics 20, 114–121 (1984).
  6. L. R. Glicksman, M. Schuetz, and M. Sinofsky, “Radiation heat transfer in foam insulation,” Int. J. Heat Mass Transfer 30, 187–197 (1987).
  7. L. R. Glicksman, A. L. Marge, and J. D. Moreno, “Radiation heat transfer in cellular foam insulation,” in Proceedings of the 28th National Heat Transfer Conference and Exhibition, HTD Vol. 203: Developments in Radiative Heat Transfer (American Society of Mechanical Engineers, New York, 1997), pp. 45–54.
  8. R. Viskanta and M. P. Mengüç, “Radiative transfer in combustion systems,” Prog. Energy Combust. Sci. 13, 97–160 (1987).
  9. L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell House, New York, 1996).
  10. M. Rubin, “Optical properties of soda-lime silicate,” Sol. Energy Mater. 12, 275–288 (1985).
  11. L. Pilon and R. Viskanta, “Radiation characteristics of glass containing bubbles,” J. Am. Ceram. Soc. 86, 1313–1320 (2003).
  12. A. G. Fedorov and R. Viskanta, “Radiative transfer in a semitransparent glass foam blanket,” Phys. Chem. Glasses 41, 127–135 (2000).
  13. A. G. Fedorov and R. Viskanta, “Radiative characteristics of glass foams,” J. Am. Ceram. Soc. 83, 2769–2776 (2000).
  14. M. J. Hale and M. S. Bohn, “Measurement of the radiative transport properties of reticulated alumina foams,” in Proceedings of the ASME/ASES Joint Solar Engineering Conference, A. Kirkpatrick and W. Worek, eds. (Association of Mechanical Engineers, New York, 1993), pp. 507–515.
  15. T. J. Hendricks and J. R. Howell, “Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics,” J. Heat Transfer 118, 79–87 (1996).
  16. D. Baillis, M. Raynaud, and J.-F. Sacadura, “Determination of spectral radiative properties of open-cell foam: model validation,” J. Thermophys. Heat Transfer 14, 137–143 (2000).
  17. D. Baillis, M. Arduini-Schuster, and J.-F. Sacadura, “Identification of spectral radiative properties of polyurethane foam from hemispherical and bi-directional transmittance and reflectance measurements,” in Proceedings of the 3rd International Symposium on Radiation Transfer, M. P. Mengüc and N. Selcuk, eds. (Begell House, New York, 2001), pp. 474–482.
  18. D. Baillis and J.-F. Sacadura, “Identification of polyurethane foam radiative properties: influence of transmittance measurements number,” J. Thermophys. Heat Transfer 16, 200–206 (2002).
  19. L. M. Moura, “Identification des propriétés radiatives des matériaux semi-transparent diffusants en situation de non-symmetrie azimutale du champ radiatif,” Ph.D. thesis (Institut National des Sciences Appliquées de Lyon, Lyon, France, 1998).
  20. W. L. Dunn, “Inverse Monte Carlo analysis,” J. Comput. Phys. 41, 154–166 (1981).
  21. S. Subramaniam and M. P. Mengüç, “Solution of the inverse radiation problem for inhomogeneous and anisotropically scattering media using a Monte Carlo technique,” Int. J. Heat Mass Transfer 14, 253–266 (1991).
  22. M. Take-Uchi, Y. Kurosaki, T. Kashiwagi, and J. Yamada, “Determination of radiation properties of porous media by measuring emission,” J. Soc. Mech. Eng. Int. J. 31, 581–585 (1988).
  23. J. Yamada and Y. Kurosaki, “Estimation of a radiative property of scattering and absorbing media,” Int. J. Thermophys. 18, 547–556 (1997).
  24. D. Doermann, “Modélisation des transferts thermiques dans des matériaux semitransparents de type mousse à pores ouverts et prédiction des propriétés radiatives,” Ph.D. thesis (Institut National des Sciences Appliquées de Lyon, Lyon, France, 1995).
  25. V. P. Nicolau, “Identification des propriétés radiatives des matèriaux semitransparent diffusants,” Ph.D. thesis (Institut National des Sciences Appliquées de Lyon, Lyon, France, 1994) (94 ISAL 0001).
  26. J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977).
  27. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Hemisphere, New York, 1992).
  28. W. S. Rodney and R. J. Spindler, “Index of refraction of fused quartz for ultraviolet, visible, and infrared wavelengths,” J. Opt. Soc. Am. 44, 677–679 (1954).
  29. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
  30. C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glass SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids 61, 1315–1320 (2000).
  31. C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelengths by ir spectroscopy,” J. Non-Cryst. Solids 223, 158–163 (1998).
  32. M. Raynaud, “Strategy for the experimental design and the estimation of parameters,” High Temp. High Press. 31, 1–15 (1999).
  33. V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261, 186–194 (2000).
  34. R. G. C. Beerkens, “The role of gases in glass melting processes,” Glastech. Ber. 71, 369–380 (1995).
  35. R. Marlor and W. Anderson, Osram Sylvania Inc., Glass Technologies Headquarters, Exeter, New Hampshire 03833 (personal communication, July 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited