OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1825–1833

Estimating visible through near-infrared spectral reflectance from a sensor radiance spectrum

Kartik Chandra and Glenn Healey  »View Author Affiliations


JOSA A, Vol. 21, Issue 10, pp. 1825-1833 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001825


View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that surface spectral reflectance can be separated from illumination effects in visible through near-infrared (350 nm–1740 nm) hyperspectral data by using only the information in a single radiance spectrum. The separation method exploits the fact that reflectance and illumination spectra typically lie in distinct subspaces. We present a comparison of a linear and a nonlinear algorithm for the separation. These algorithms compute an estimate of the spectral reflectance up to a scaling factor. In addition, we present an iterative method that is used to determine the starting point for the nonlinear algorithm. We also develop a method for selecting the dimension of the reflectance and illumination subspaces that is appropriate for material identification applications. The accuracy of the separation methods is quantified by application to noisy visible through near-infrared spectral data with a database of 107 materials and 3000 illumination spectra. The utility of the separation method for material identification is demonstrated with the same database. The results show that accurate reflectance recovery and material identification is possible by use of visible through near-infrared spectral data over the outdoor environmental conditions represented in this data set.

© 2004 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(150.2950) Machine vision : Illumination

History
Original Manuscript: February 26, 2004
Revised Manuscript: April 23, 2004
Manuscript Accepted: April 23, 2004
Published: October 1, 2004

Citation
Kartik Chandra and Glenn Healey, "Estimating visible through near-infrared spectral reflectance from a sensor radiance spectrum," J. Opt. Soc. Am. A 21, 1825-1833 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-10-1825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Vane, R. Green, T. Chrein, H. Enmark, E. Hanson, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993). [CrossRef]
  2. S. Goward, B. Markham, D. Dye, W. Dolaney, J. Yang, “Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer,” Remote Sens. Environ. 35, 257–277 (1991). [CrossRef]
  3. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  4. D. Slater, G. Healey, “Analyzing the spectral dimensionality of outdoor visible and near-infrared illumination functions,” J. Opt. Soc. Am. A 15, 2913–2920 (1998). [CrossRef]
  5. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964). [CrossRef]
  6. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  7. M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  8. R. Lenz, “Two-stage principal component analysis of color,” IEEE Trans. Image Process. 10, 630–635 (2002). [CrossRef]
  9. S. R. Das, V. D. P. Sastri, “Spectral distribution and color of tropical daylight,” J. Opt. Soc. Am. 55, 319–323 (1965). [CrossRef]
  10. E. R. Dixon, “Spectral distribution of Australian daylight,” J. Opt. Soc. Am. 68, 437–450 (1978). [CrossRef]
  11. J. Hernández-Andrés, J. Romero, A. Garcı́a-Beltrán, J. L. Nieves, “Testing linear models on spectral daylight measurements,” Appl. Opt. 37, 971–977 (1998). [CrossRef]
  12. D. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  13. J. Romero, A. Garcı́a-Beltrán, J. Hernández-Andrés, “Linear basis for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007–1012 (1997). [CrossRef]
  14. G. T. Winch, M. C. Boshoff, C. J. Kok, A. G. DuToit, “Spectroradiometric and colorimetric characteristics of daylight in the Southern Hemisphere: Pretoria, South Africa,” J. Opt. Soc. Am. 56, 456–464 (1966). [CrossRef]
  15. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  16. J. Ho, B. V. Funt, M. S. Drew, “Separating a color signal into illumination and surface reflectance components: Theory and applications,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 966–977 (1990). [CrossRef]
  17. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  18. L. Marimont, B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913 (1992). [CrossRef] [PubMed]
  19. M. J. Vrhel, H. J. Trussell, “Color correction using principal component analysis,” Color Res. Appl. 17, 328–338 (1992). [CrossRef]
  20. G. Healey, L. Benites, “Linear models for spectral reflectance functions over the mid-wave and long-wave infrared,” J. Opt. Soc. Am. A 15, 2216–2227 (1998). [CrossRef]
  21. G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).
  22. M. S. Drew, B. V. Funt, “Natural metamers,” Comput. Vis. Image Underst. 15, 139–151 (1992). [CrossRef]
  23. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431–441 (1963). [CrossRef]
  24. J. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice Hall, Englewood Cliffs, N.J., 1983).
  25. F. H. Imai, M. R. Rosen, R. S. Berns, “Comparative study of metrics for spectral match quality,” presented at the First European Conference on Colour in Graphics, Imaging and Vision, Poitiers, France, April 2–5, 2002.
  26. These data are available at http://speclab.cr.usgs.gov/ .
  27. R. W. Basedow, W. S. Aldrich, J. E. Colwel, W. D. Kinder, “HYDICE system performance: an update,” in Hyperspectral Remote Sensing and Applications, S. Shen, ed., Proc. SPIE2821, 76–84 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited