OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1841–1854

Mistral: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images

Laurent M. Mugnier, Thierry Fusco, and Jean-Marc Conan  »View Author Affiliations


JOSA A, Vol. 21, Issue 10, pp. 1841-1854 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001841


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Deconvolution is a necessary tool for the exploitation of a number of imaging instruments. We describe a deconvolution method developed in a Bayesian framework in the context of imaging through turbulence with adaptive optics. This method uses a noise model that accounts for both photonic and detector noises. It additionally contains a regularization term that is appropriate for objects that are a mix of sharp edges and smooth areas. Finally, it reckons with an imperfect knowledge of the point-spread function (PSF) by estimating the PSF jointly with the object under soft constraints rather than blindly (i.e., without constraints). These constraints are designed to embody our knowledge of the PSF. The implementation of this method is called Mistral. It is validated by simulations, and its effectiveness is illustrated by deconvolution results on experimental data taken on various adaptive optics systems and telescopes. Some of these deconvolutions have already been used to derive published astrophysical interpretations.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(100.1830) Image processing : Deconvolution
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(110.6770) Imaging systems : Telescopes

History
Original Manuscript: August 8, 2003
Revised Manuscript: April 14, 2004
Manuscript Accepted: April 14, 2004
Published: October 1, 2004

Citation
Laurent M. Mugnier, Thierry Fusco, and Jean-Marc Conan, "Mistral: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images," J. Opt. Soc. Am. A 21, 1841-1854 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-10-1841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Hardy, J. E. Lefevbre, C. L. Koliopoulos, “Real time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977). [CrossRef]
  2. G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, 29–32 (1990).
  3. F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, UK, 1999).
  4. F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J.-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).
  5. M. C. Roggemann, “Limited degree-of-freedom adaptive optics and image reconstruction,” Appl. Opt. 30, 4227–4233 (1991). [CrossRef] [PubMed]
  6. J. M. Conan, P. Y. Madec, G. Rousset, “Image formation in adaptive optics partial correction,” in Active and Adaptive Optics, F. Merkle, ed., ESO Conference and Workshop Proceedings (Garching bei München, Germany, 1994), pp. 181–186.
  7. J.-M. Conan, “Étude de la correction partielle en optique adaptative,” Ph.D. thesis (Université Paris XI Orsay, Orsay, France, 1994).
  8. G. Demoment, “Image reconstruction and restoration: overview of common estimation structures and problems,” 37, 2024–2036 (1989).
  9. J. Idier, ed., Approche bayésienne pour les problèmes inverses (Hermès, Paris, 2001).
  10. J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, G. Rousset, “Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra,” Appl. Opt. 37, 4614–4622 (1998). [CrossRef]
  11. T. Fusco, J.-P. Véran, J.-M. Conan, L. Mugnier, “Myopic deconvolution method for adaptive optics images of stellar fields,” Astron. Astrophys. Suppl. Ser. 134, 1–10 (1999). [CrossRef]
  12. A. D. Storrs, C. Dunne, J.-M. Conan, L. Mugnier, B. P. Weiss, B. Zellner, “A closer look at main belt asteroids 1: WF/PC images,” Icarus (to be published).
  13. D. Gratadour, L. M. Mugnier, D. Rouan, “Image centering with a maximum likelihood estimator: application to infrared astronomical imaging,” in ADASS XIII, F. Ochsenbein, M. Allen, D. Egret, eds., Astron. Soc. Pacific Conf. Series 30 (Publications of the Astronomical Society of the Pacific, San Francisco, Calif., 2004); manuscript available from the authors, Damien.Gratadour@onera.fr.
  14. J.-P. Véran, F. Rigaut, H. Maître, D. Rouan, “Estimation of the adaptive optics long-exposure point-spread function using control loop data,” J. Opt. Soc. Am. A 14, 3057–3069 (1997). [CrossRef]
  15. A. Blanc, L. M. Mugnier, J. Idier, “Marginal estimation of aberrations and image restoration by use of phase diversity,” J. Opt. Soc. Am. A 20, 1035–1045 (2003). [CrossRef]
  16. M. Hartung, A. Blanc, T. Fusco, F. Lacombe, L. M. Mugnier, G. Rousset, R. Lenzen, “Calibration of NAOS and CONICA static aberrations. Experimental results,” Astron. Astrophys. 399, 385–394 (2003). [CrossRef]
  17. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  18. J. Nunez, J. Llacer, “A general Bayesian image reconstruction algorithm with entropy prior: preliminary application to HST data,” Publ. Astron. Soc. Pac. 105, 1192–1208 (1993). [CrossRef]
  19. A. Blanc, J. Idier, L. M. Mugnier, “Novel estimator for the aberrations of a space telescope by phase diversity,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jakobsen, eds., Proc. SPIE4013, 728–736 (2000). [CrossRef]
  20. A. Blanc, “Identification de réponse impulsionnelle et restauration d’images: apports de la diversité de phase,” Ph.D. thesis (Université Paris XI Orsay, Orsay, France, 2002).
  21. A. Blanc, T. Fusco, M. Hartung, L. M. Mugnier, G. Rousset, “Calibration of NAOS and CONICA static aberrations. Application of the phase diversity technique,” Astron. Astrophys. 399, 373–383 (2003). [CrossRef]
  22. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging 9, 84–93 (1990). [CrossRef] [PubMed]
  23. C. Bouman, K. Sauer, “A generalized gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2, 296–310 (1993). [CrossRef] [PubMed]
  24. J. Idier, L. Blanc-Féraud, “Déconvolution en imagerie,” in Approche bayésienne pour les problèmes inverses, J. Idier, ed. (Hermès, Paris, 2001), Chap. 6, pp. 139–165.
  25. W. J. J. Rey, Introduction to Robust and Quasi-Robust Statistical Methods (Springer-Verlag, Berlin, 1983).
  26. S. Brette, J. Idier, “Optimized single site update algorithms for image deblurring,” in Proceedings of the International Conference on Image Processing (IEEE Computer Society, Press, Los Alamitos, Calif., 1996), pp. 65–68.
  27. L. M. Mugnier, C. Robert, J.-M. Conan, V. Michau, S. Salem, “Myopic deconvolution from wave-front sensing,” J. Opt. Soc. Am. A 18, 862–872 (2001). [CrossRef]
  28. L. Mugnier, G. Le Besnerais, “Problèmes inverses en imagerie optique à travers la turbulence,” in Approche bayésienne pour les problèmes inverses, J. Idier, ed. (Hermès, Paris, 2001), Chap. 10, pp. 241–270.
  29. H. R. Künsch, “Robust priors for smoothing and image restoration,” Ann. Inst. Statist. Math. 46, 1–19 (1994). [CrossRef]
  30. J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Ser. 15, 417–426 (1974).
  31. P. Stetson, “DAOPHOT: a computer program for crowded-field stellar photometry,” Publ. Astron. Soc. Pac. 99, 191–222 (1987). [CrossRef]
  32. P. Magain, F. Courbin, S. Sohy, “Deconvolution with correct sampling,” Astrophys. J. 494, 472–477 (1998). [CrossRef]
  33. K. F. Kaaresen, “Evaluation and applications of the iterated window maximization method for sparse deconvolution,” IEEE Trans. Signal Process. 46, 609–624 (1998). [CrossRef]
  34. F. Champagnat, Y. Goussard, S. Gautier, J. Idier, “Déconvolution impulsionnelle,” in Approche bayésienne pour les problémes inverses, J. Idier, ed. (Hermès, Paris, 2001), Chap. 5, pp. 115–138.
  35. T. J. Holmes, “Blind deconvolution of speckle images quantum-limited incoherent imagery: maximum-likehood approach,” J. Opt. Soc. Am. A 9, 1052–1061 (1992). [CrossRef] [PubMed]
  36. E. Thiébaut, J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995). [CrossRef]
  37. D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. A 12, 58–65 (1995). [CrossRef]
  38. S. M. Jefferies, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993). [CrossRef]
  39. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993). [CrossRef]
  40. Y.-L. You, M. Kaveh, “A regularization approach to joint blur identification and image restoration,” IEEE Trans. Image Process. 5, 416–428 (1996). [CrossRef] [PubMed]
  41. G. Rousset, “Wave-front sensors,” Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge U. Press, Cambridge, UK, 1999), Chap. 5, pp. 91–130. See also Ref. 3.
  42. S. Harder, “Reconstruction de la réponse impulsionnelle du système d’optique adaptative ADONIS à partir des mesures de son analyseur de surface d’onde et Étude photométrique de la variabilité des étoiles YY Orionis,” Ph.D. thesis (Université Joseph Fourier, Grenoble 1, France, 1999).
  43. Groupe Problèmes Inverses, “GPAV: une grande œuvre collective,” internal report (Laboratoire des Signaux et Systèmes, CNRS/Supélec/Université Paris-Sud, Orsay, France, 1997).
  44. D. P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, Mass., 1995).
  45. D. G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, Mass., 1973).
  46. D. M. Titterington, “General structure of regularization procedures in image reconstruction,” Astron. Astrophys. 144, 381–387 (1985).
  47. Y. Biraud, “A new approach for increasing the resolving power by data processing,” Astron. Astrophys. 1, 124–127 (1969).
  48. D. Commenges, “The deconvolution problem: fast algorithms including the preconditioned conjugate-gradient to compute a MAP estimator,” IEEE Trans. Autom. Control 29, 229–243 (1984). [CrossRef]
  49. O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988). [CrossRef]
  50. G. Rousset, F. Lacombe, P. Puget, N. Hubin, E. Gendron, T. Fusco, R. Arsenault, J. Charton, P. Gigan, P. Kern, A.-M. Lagrange, P.-Y. Madec, D. Mouillet, D. Rabaud, P. Rabou, E. Stadler, G. Zins, “NAOS, the first AO system of the VLT: on sky performance,” in Adaptive Optical System Technology II, P. L. Wizinowich, D. Bonaccini, eds., Proc. SPIE4839, 140–149 (2002). [CrossRef]
  51. D. L. Snyder, M. I. Miller, L. J. Thomas, D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 6, 228–237 (1987). [CrossRef]
  52. J.-M. Conan, T. Fusco, L. Mugnier, F. Marchis, C. Roddier, F. Roddier, “Deconvolution of adaptive optics images: from theory to practice,” in Adaptive Optical Systems Technology, P. Wizinowich, ed., Proc. SPIE4007, 913–924 (2000). [CrossRef]
  53. T. Fusco, “Correction partielle et anisoplanétisme en optique adaptative: traitement a posteriori et optique adaptative multiconjuguée,” Ph.D. thesis (Université de Nice-Sophia Antipolis, Nice, France, 2000).
  54. F. Marchis, I. de Pater, A. G. Davies, H. G. Roe, T. Fusco, D. Le Mignant, P. Descamps, B. A. Macintosh, R. Prangé, “High-resolution Keck adaptive optics imaging of violent volcanic activity on Io,” Icarus 160, 124–131 (2002). [CrossRef]
  55. F. Marchis, “Imagerie à haute résolution angulaire des objets planétaires en optique adaptative. Application au volcanisme de Io,” Ph.D. thesis (Université Paul Sabatier (Toulouse III), Toulouse, France, 2000).
  56. A.-M. Lagrange, G. Chauvin, T. Fusco, E. Gendron, D. Rouan, M. Hartung, F. Lacombe, D. Mouillet, G. Rousset, P. Drossart, R. Lenzen, C. Moutou, W. Brandner, N. Hubin, Y. Clenet, A. Stolte, R. Schoedel, G. Zins, J. Spyromilio, “First diffraction limited images at VLT with NAOS and CONICA,” in Instrumental Design and Performance for Optical/Infrared Ground-Based Telescopes, M. Iye, A. F. M. Moorwood, eds., Proc. SPIE4841, 860–868 (2002). [CrossRef]
  57. R. Lenzen, M. Hartung, W. Brandner, G. Finger, N. N. Hubin, F. Lacombe, A.-M. Lagrange, M. D. Lehnert, A. F. M. Moorwood, D. Mouillet, “NAOS-CONICA first on-sky results in a variety of observing modes,” in Instrumental Desigtn and Performance for Optical/Infrared Ground-Based Telescopes, M. Iye, A. F. M. Moorwood, eds., Proc. SPIE4841, 944–952 (2002). [CrossRef]
  58. F. Marchis, R. Prangé, T. Fusco, “A survey of Io’s volcanism by adaptive optics observations in the 3.8 micron thermal band (1996–1999),” J. Geophys. Res. 106, 33141–33160 (2001). [CrossRef]
  59. R. R. Howell, J. R. Spencer, J. D. Goguen, F. Marchis, R. Prangé, T. Fusco, B. D. L., G. J. Veeder, J. A. Rathbun, G. S. Orton, A. J. Groeholski, J. A. Stansberry, “Ground-based observations of volcanism on Io in 1999 and early 2000,” J. Geophys. Res. 106, 33–129 (2002).
  60. F. Roddier, C. Roddier, J. E. Graves, M. J. Northcott, T. Owen, “Neptune cloud structure and activity: ground based monitoring with adaptive optics,” Icarus 136, 168–172 (1998). [CrossRef]
  61. J.-M. Conan, T. Fusco, L. M. Mugnier, F. Marchis, “MISTRAL: Myopic Deconvolution Method Applied to ADONIS and simulated VLT-NAOS Images,” ESO Messenger 99, 38–45 (2000).
  62. G. Chauvin, F. Ménard, T. Fusco, A.-M. Lagrange, J.-L. Beuzit, D. Mouillet, J.-C. Augereau, “Adaptive optics imaging of MBM 12 association. Seven binaries and edge-on disk in a quadruple system,” Astron. Astrophys. 394, 949–956 (2002). [CrossRef]
  63. R. Jayawardhana, A. Brandeker, “Discovery of close companions to the nearby young stars HD 199143 and HD 358623,” Astrophys. J. Lett. 561, L111–L113 (2001). [CrossRef]
  64. G. Chauvin, T. Fusco, A.-M. Lagrange, D. Mouillet, J.-L. Beuzit, M. Thomson, J.-C. Augereau, F. Marchis, C. Dumas, P. Lowrance, “No disk needed around HD 199143 B,” Astron. Astrophys. 394, 219–223 (2002). [CrossRef]
  65. A. Coustenis, E. Gendron, O. Lai, J.-P. Véran, J. Woillez, M. Combes, L. Vapillon, T. Fusco, L. Mugnier, P. Rannou, “Images of Titan at 1.3 and 1.6 micron with adaptive optics at the CFHT,” Icarus 154, 501–515 (2001). [CrossRef]
  66. S. Gibbard, B. A. Macintosh, C. E. Max, I. de Pater, F. Marchis, H. Roe, D. S. Acton, O. Lai, P. Wizinowitch, P. Stomski, E. F. Young, C. P. McKay, “Near-infrared observations of Titan from the W. M. Keck Telescope adaptive optics system,” manuscript available from the authors, e.g., fmarchis@astron.berkeley.edu.
  67. G. Chauvin, M. Thomson, C. Dumas, J.-L. Beuzit, P. Lowrance, T. Fusco, A.-M. Lagrange, B. Zuckerman, D. Mouillet, “Adaptive optics imaging survey of the Tucana–Horologium association,” Astron. Astrophys. 404, 157–162 (2003). [CrossRef]
  68. D. Hestroffer, F. Marchis, T. Fusco, J. Berthier, “Adaptive optics observations of asteroid (216) Kleopatra,” Research Note, Astron. Astrophys. 394, 339–343 (2002). [CrossRef]
  69. T. Fusco, J.-M. Conan, L. Mugnier, V. Michau, G. Rousset, “Characterization of adaptive optics point spread function for anisoplanatic imaging. Application to stellar field deconvolution,” Astron. Astrophys. Suppl. Ser. 142, 149–156 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited