## Partially coherent vectorial nonparaxial beams

JOSA A, Vol. 21, Issue 10, pp. 1924-1932 (2004)

http://dx.doi.org/10.1364/JOSAA.21.001924

Enhanced HTML Acrobat PDF (959 KB)

### Abstract

Generalized vectorial Rayleigh–Sommerfeld diffraction integrals are developed for the cross-spectral-density matrices of spatially partially coherent beams. Using the Gaussian Schell-model (GSM) beam as an example, we derive the expressions for the propagation of cross-spectral-density matrices and intensity of partially coherent vectorial nonparaxial beams, and the corresponding far-field asymptotic forms, beyond the paraxial approximation. The propagation of the vectorial nonparaxial GSM beams are evaluated and analyzed. It is shown that a

© 2004 Optical Society of America

**OCIS Codes**

(030.1640) Coherence and statistical optics : Coherence

(050.1940) Diffraction and gratings : Diffraction

**History**

Original Manuscript: April 6, 2004

Revised Manuscript: May 17, 2004

Manuscript Accepted: May 17, 2004

Published: October 1, 2004

**Citation**

Kailiang Duan and Baida Lü, "Partially coherent vectorial nonparaxial beams," J. Opt. Soc. Am. A **21**, 1924-1932 (2004)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-10-1924

Sort: Year | Journal | Reset

### References

- M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
- G. P. Agrawal, D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69, 575–578 (1979). [CrossRef]
- T. Takenaka, M. Yokota, O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985). [CrossRef]
- H. Laabs, “Propagation of Hermite–Gaussian-beams beyond the paraxial approximation,” Opt. Commun. 147, 1–4 (1998). [CrossRef]
- A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992). [CrossRef]
- S. R. S. Seshadri, “Virtual source for a Hermite–Gauss beam,” Opt. Lett. 28, 595–597 (2003). [CrossRef] [PubMed]
- A. Ciattoni, B. Crosignani, P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun. 202, 17–20 (2002). [CrossRef]
- J. Tervo, J. Turunen, “Angular spectrum representation of partially coherent electromagnetic fields,” Opt. Commun. 209, 7–16 (2002). [CrossRef]
- W. H. Carter, “Electromagnetic field of a Gaussian beam with an elliptical cross section,” J. Opt. Soc. Am. 62, 1195–1201 (1972). [CrossRef]
- K. Duan, B. Lü, “Partially coherent nonparaxial beams,” Opt. Lett. 29, 800–802 (2004). [CrossRef] [PubMed]
- X. Zeng, C. Liang, Y. An, “Far-field propagation of an off-axis Gaussian wave,” Appl. Opt. 38, 6253–6256 (1999). [CrossRef]
- C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann, M. L. Schattenburg, “Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations,” J. Opt. Soc. Am. A 19, 404–412 (2002). [CrossRef]
- R. K. Luneburg, Mathematical Theory of Optics (U. California Press, Berkeley, Calif., 1966).
- L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
- K. Duan, B. Lü, “Propagation properties of vectorial elliptical Gaussian beams beyond the paraxial approximation,” Opt. Laser Technol. (to be published).
- A. T. Friberg, R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982). [CrossRef]
- S. Nemoto, “Nonparaxial Gaussian beams,” Appl. Opt. 29, 1940–1946 (1990). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.