OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1953–1961

Light scattering by multiple red blood cells

Jiangping He, Anders Karlsson, Johannes Swartling, and Stefan Andersson-Engels  »View Author Affiliations


JOSA A, Vol. 21, Issue 10, pp. 1953-1961 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001953


View Full Text Article

Acrobat PDF (285 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interaction of light with multiple red blood cells was systematically investigated by the finite-difference time-domain method (FDTD). The simulations showed that the lateral multiple scattering between red blood cells is very weak and that the polarization has an almost insignificant influence on the distribution of the scattered light. The numerical results of the FDTD method were compared with the results from the Rytov approximation and the discrete dipole approximation (DDA). The agreement with the DDA was excellent.

© 2004 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(290.0290) Scattering : Scattering

Citation
Jiangping He, Anders Karlsson, Johannes Swartling, and Stefan Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21, 1953-1961 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-10-1953


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Johansson, M. S. T. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, and K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
  2. S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, and T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).
  3. L. Lilge, K. Molpus, T. Hasan, and B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
  4. I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
  5. I. J. Bigio, J. R. Mourant, and G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).
  6. J. R. Mourant, T. M. Johnson, G. Los, and I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
  7. G. Mazarevica, T. Freivalds, and A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).
  8. Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
  9. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” Tech. Rep. LUTEDX/(TEAT-7116) (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).
  10. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
  11. S. V. Tsinopoulos, E. J. Sellountos, and D. Polyzos, “Light scattering by aggregated red blood cells,” Appl. Opt. 41, 1408–1417 (2002).
  12. E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).
  13. P. Alsholm, “Light scattering by individual and groups of spheroidal particles,” Tech. Rep. LRAP-200, Lund reports on Atomic Physics (Lund Institute of Technology, Lund, Sweden, 1996).
  14. R. A. Meyer, “Light scattering from red blood cell ghosts: sensitivity of angular dependent structure to membrane thickness and refractive index,” Appl. Opt. 16, 2036–2037 (1977).
  15. J. C. Lin and A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).
  16. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
  17. R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
  18. R. Drezek, A. Dunn, and R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000).
  19. A. Dunn, C. Smithpeter, A. Welch, and R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
  20. D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
  21. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  22. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
  23. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
  24. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, N.J., 1991).
  25. B. T. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, New York, 2000).
  26. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  27. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).
  28. http://www.semcad.com/.
  29. A. M. K. Enejder, “Light scattering and absorption in tissue—models and measurements,” Ph.D. thesis (Lund Institute of Technology, Lund, Sweden, 1997).
  30. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
  31. L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).
  32. S. V. Tsinopoulos and D. Polyzos, “Scattering of He–Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited