OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1962–1969

Modeling turbulent wave-front phase as a fractional Brownian motion: a new approach

Darı́o G. Pérez, Luciano Zunino, and Mario Garavaglia  »View Author Affiliations


JOSA A, Vol. 21, Issue 10, pp. 1962-1969 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001962


View Full Text Article

Enhanced HTML    Acrobat PDF (194 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new, general formalism to model the turbulent wave-front phase by using fractional Brownian motion processes. Moreover, it extends results to non-Kolmogorov turbulence. In particular, generalized expressions for the Strehl ratio and the angle-of-arrival variance are obtained. These are dependent on the dynamic state of the turbulence.

© 2004 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.7060) Atmospheric and oceanic optics : Turbulence
(080.2720) Geometric optics : Mathematical methods (general)

History
Original Manuscript: March 1, 2004
Revised Manuscript: May 12, 2004
Manuscript Accepted: May 12, 2004
Published: October 1, 2004

Citation
Darı́o G. Pérez, Luciano Zunino, and Mario Garavaglia, "Modeling turbulent wave-front phase as a fractional Brownian motion: a new approach," J. Opt. Soc. Am. A 21, 1962-1969 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-10-1962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. E. Silbaugh, B. M. Welsh, M. C. Roggemann, “Characterization of atmospheric turbulence phase statistics using wave-front slope measurements,” J. Opt. Soc. Am. A 13, 2453–2460 (1996). [CrossRef]
  2. D. S. Acton, R. J. Sharbaugh, J. R. Roehrig, D. Tiszauer, “Wave-front tilt power spectral density from the image motion of solar pores,” Appl. Opt. 31, 4280–4284 (1992). [CrossRef] [PubMed]
  3. D. L. Fried, “Differential angle of arrival: theory, evaluation, and measurement feasibility,” Radio Sci. 10, 71–76 (1975). [CrossRef]
  4. M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  5. D. Dayton, Bob Pierson, B. Spielbusch, J. Gonglewski, “Atmospheric structure function measurements with a Shack–Hartmann wave-front sensor,” Opt. Lett. 17, 1737–1739 (1992). [CrossRef] [PubMed]
  6. T. W. Nicholls, G. D. Boreman, J. C. Dainty, “Use of a Shack–Hartmann wave-front sensor to measure deviations from a Kolmogorov phase spectrum,” Opt. Lett. 20, 2460–2462 (1995). [CrossRef]
  7. The structure function is a basic characteristic of random fields with stationary increments. It is appropriate for analyzing the temporal and spatial structure of locally homogeneous and isotropic random fields; see V. I. Tatarskı̆, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961), pp. 9–10, 19–20.
  8. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, Vol. XIX, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 281–376.
  9. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  10. R. G. Buser, “Interferometric determination of the distance dependence of the phase structure function for near-ground horizontal propagation at 6328 Å,” J. Opt. Soc. Am. 61, 488–491 (1971). [CrossRef]
  11. M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, C. H. Townes, “Atmospheric fluctuations: empirical structure functions and projected performance of future instruments,” Astrophys. J. 392, 357–374 (1992). [CrossRef]
  12. B. E. Stribling, “Laser beam propagation in non-Kolmogorov atmospheric turbulence,” M.S. thesis (Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 1994).
  13. C. Schwartz, G. Baum, E. N. Ribak, “Turbulence-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994). [CrossRef]
  14. M. B. Jorgenson, G. J. M. Aitken, “Prediction of atmospherically induced wave-front degradations,” Opt. Lett. 17, 466–468 (1992). [CrossRef] [PubMed]
  15. M. Lloyd-Hart, P. C. McGuire, “Spatio-temporal prediction for adaptive optics wavefront reconstructors,” in Proceedings of the European Southern Observatory Conference on Adaptive Optics, M. Cullum, ed. (European Southern Observatory, Garching, Germany, 1995), Vol. 54, pp. 95–101.
  16. D. R. McGaughey, G. J. M. Aitken, “Temporal analysis of stellar wave-front-tilt data,” J. Opt. Soc. Am. A 14, 1967–1974 (1997). [CrossRef]
  17. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  18. L. Lakhal, A. Irbah, M. Bouzaria, J. Borgnino, F. Laclare, C. Delmas, “Error due to atmospheric turbulence effects on solar diameter measurements performed with an astrolabe,” Astron. Astrophys. Suppl. Ser. 138, 155–162 (1999). [CrossRef]
  19. This algorithm has a major drawback: It produces nonstationary increments, as was noted by McGaughey, Aitken, “Statistical analysis of successive random addition for generating fractional Brownian motion,” Physica A 277, 25–34 (2000). [CrossRef]
  20. H. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer-Verlag, New York, 1992).
  21. D. G. Pérez, L. Zunino, M. Garavaglia, “A fractional Brownian motion model for the turbulent refractive index in lightwave propagation,” revised for Opt. Commun., http://arxiv.org/pdf/physics/0307052 .
  22. Y. Chen, M. Ding, J. A. Scott Kelso, “Long memory processes (1/fα-type) in human coordination,” Phys. Rev. Lett. 79, 4501–4504 (1997). [CrossRef]
  23. G. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach, Vol. 35 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1984).
  24. E. E. Peters, Fractal Market Analysis: Applying Chaos Theory in Investment, Wiley Finance Editions (Wiley, New York, 1994).
  25. In this paper instead of the usual frequency f, ν=2πfis used for self-consistency.
  26. P. Flandrin, “Wavelet tools for scaling processes,” lecture, http://perso.ens-Lyon.fr/patrick.flandrin/Cargese02.pdf .
  27. R. J. Elliott, J. van der Hoek, “A general fractional white noise theory and applications to finance,” Math. Finance 13, 301–330 (2003). [CrossRef]
  28. D. G. Pérez, “Propagación de Luz en Medios Turbulentos,” Ph.D.thesis (Universidad Nacional de La Plata, Argentina, 2003), http://arxiv.org/pdf/physics/0307144 .
  29. G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance (Chapman & Hall, London, 1994).
  30. B. B. Mandelbrot, J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Rev. 4, 422–437 (1968). [CrossRef]
  31. K. J. Falconer, Fractal Geometry: Mathematical Theory and Applications (Wiley, New York, 1990).
  32. K. Itô, Kiyosi Itô: Selected Papers, S. Varadhan, D. W. Strook, eds. (Springer-Verlag, New York, 1986).
  33. B. Øksendal, Stochastic Differential Equations (Springer, New York, 1998).
  34. D. Nualart, The Malliavin Calculus and Related Topics (Springer-Verlag, New York, 1995).
  35. T. Hida, Selected Papers of Takeyuki Hida, L. Accardi, H. H. Kuo, N. Obata, K. Saitô, S. Si, L. Streit, eds. (World Scientific, River Edge, N.J., 2000).
  36. H. Holden, B. Øksendal, J. Ubøe, T. Zhang, Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach: Probability and Its Applications (Birkhäuser, Boston, Mass., 1996).
  37. M. Zähle, “Integration with respect to fractal functions andstochastic calculus I,” Probab. Theory Relat. Fields 97, 333–374 (1993).
  38. M. Zähle, “Integration with respect to fractal functions and stochastic calculus II,” Math. Nachr. 225, 145–183 (2001). [CrossRef]
  39. L. Decreusefond, A. S. Üstünel, “Fractional Brownian motion: theory and applications,” in ESAIM: Proceedings on Fractional Differential Systems: Models, Methods and Applications, Vol. 5, pp. 75–86, http://citeseer.ist.psu.edu/decreusefond98fractional.html .
  40. H. Föllmer, P. Protter, A. N. Shiryaev, “Quadratic covariation and an extension of Itô formula,” J. Bernoulli Soc. 1, 175–169 (1995).
  41. T. E. Duncan, Y. Hu, B. Pasik-Duncan, “Stochastic calculus for fractional Brownian motion: I. theory,” SIAM J. Control Optim. 38, 582–612 (2000). [CrossRef]
  42. If tilt aberration is present, the axis by this definition would be normal to the plane of that tilt.
  43. D. L. Fried, “Atmospheric turbulence optical effects: understanding the adaptive-optics implications,” in Proceedings of the NATO Advanced Study Institute on Adaptive Optics for Astronomy, D. M. Alloin, J. M. Mariotti, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 25–27.
  44. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975).
  45. V. I. Tatarskı̆, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) (in Russian). English translation, Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Virginia, 1971).
  46. P. N. Brandt, H. A. Mauter, R. Smartt, “Day-time seeing statistics at Sacramento Peak Observatory,” Astron. Astrophys. 188, 163–168 (1987).
  47. D. S. Acton, “Simultaneous daytime measurements of the atmospheric coherence diameter r0 with three different methods,” Appl. Opt. 34, 4526–4529 (1995). [CrossRef] [PubMed]
  48. S. S. Olivier, C. E. Max, D. T. Gavel, J. M. Brase, “Tip-tilt compensation: resolution limits for ground-based telescopes using laser guide star adaptive optics,” Astrophys. J. 407, 428–439 (1993). [CrossRef]
  49. In this paper the Fourier transform is defined as ϕˆ(ν)=1/2π∫Rdsϕ(s)exp(-iνs).
  50. J.-M. Conan, G. Rousset, P.-Y. Madec, “Wave-front temporal spectra in high-resolution imaging through turbulence,” J. Opt. Soc. Am. A 12, 1559–1570 (1995). [CrossRef]
  51. It is equal to 1 if tfalls in the interval (a, b),zero otherwise, and -1 when b<a.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited