OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1975–1987

A class of solution-invariant transformations of cost functions for minimum cost flow phase unwrapping

Michael Hubig, Steffen Suchandt, and Nico Adam  »View Author Affiliations


JOSA A, Vol. 21, Issue 10, pp. 1975-1987 (2004)
http://dx.doi.org/10.1364/JOSAA.21.001975


View Full Text Article

Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase unwrapping (PU) represents an important step in synthetic aperture radar interferometry (InSAR) and other interferometric applications. Among the different PU methods, the so called branch-cut approaches play an important role. In 1996 M. Costantini [Proceedings of the Fringe ’96 Workshop ERS SAR Interferometry (European Space Agency, Munich, 1996), pp. 261–272] proposed to transform the problem of correctly placing branch cuts into a minimum cost flow (MCF) problem. The crucial point of this new approach is to generate cost functions that represent the a priori knowledge necessary for PU. Since cost functions are derived from measured data, they are random variables. This leads to the question of MCF solution stability: How much can the cost functions be varied without changing the cheapest flow that represents the correct branch cuts?  This question is partially answered: The existence of a whole linear subspace in the space of cost functions is shown; this subspace contains all cost differences by which a cost function can be changed without changing the cost difference between any two flows that are discharging any residue configuration. These cost differences are called strictly stable cost differences. For quadrangular nonclosed networks (the most important type of MCF networks for interferometric purposes) a complete classification of strictly stable cost differences is presented. Further, the role of the well-known class of node potentials in the framework of strictly stable cost differences is investigated, and information on the vector-space structure representing the MCF environment is provided.

© 2004 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.6730) Remote sensing and sensors : Synthetic aperture radar

Citation
Michael Hubig, Steffen Suchandt, and Nico Adam, "A class of solution-invariant transformations of cost functions for minimum cost flow phase unwrapping," J. Opt. Soc. Am. A 21, 1975-1987 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-10-1975

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited