OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 2009–2018

Reflectivity of buried slab waveguides

Panagiotis G. Gerolymatos, Alexander B. Manenkov, Ioannis G. Tigelis, and Angelos J. Amditis  »View Author Affiliations


JOSA A, Vol. 21, Issue 10, pp. 2009-2018 (2004)
http://dx.doi.org/10.1364/JOSAA.21.002009


View Full Text Article

Acrobat PDF (223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering properties of an abruptly ended buried slab waveguide for both TE and TM modes are examined by an improved iteration technique that is based on the integral equation method with “accelerating” parameters. The waveguide is considered a symmetrical slab, for which the weakly guiding conditions are invalid, and it is embedded in a different dielectric material. The tangential electric field distribution on the terminal plane, the reflection coefficient of the first TE and TM guided modes, and the far-field radiation pattern are computed. Numerical results are presented for several ended waveguides, while special attention is given to the far-field radiation pattern rotation and the terminal field distributions.

© 2004 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(230.4170) Optical devices : Multilayers
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab
(260.2110) Physical optics : Electromagnetic optics
(290.0290) Scattering : Scattering

Citation
Panagiotis G. Gerolymatos, Alexander B. Manenkov, Ioannis G. Tigelis, and Angelos J. Amditis, "Reflectivity of buried slab waveguides," J. Opt. Soc. Am. A 21, 2009-2018 (2004)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-10-2009


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49, 273–290 (1970).
  2. R. M. Knox and P. P. Toulios, “Integrated circuits for the millimeter through optical frequency range,” in Proceedings of the MRI Symposium on Submillimeter Waves, J. Fox, ed. (Polytechnic Press, Brooklyn, N.Y., 1970), pp. 497–516.
  3. T. E. Rozzi, “Rigorous analysis of the step discontinuity in a planar dielectric waveguide,” IEEE Trans. Microwave Theory Tech. MTT-26, 738–746 (1978).
  4. K. Morishita, S. Inagaki, and N. Kumagai, “Analysis of discontinuities in dielectric waveguides by means of the least squares boundary residual method,” IEEE Trans. Microwave Theory Tech. MTT-27, 310–315 (1979).
  5. A. Ittipiboon and M. Hamid, “Scattering of surface waves at a slab waveguide discontinuity,” Proc. Inst. Electr. Eng. 126, 798–804 (1979).
  6. H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
  7. K. Uchida and K. Aoki, “Scattering of surface waves on transverse discontinuities in symmetrical three-layer dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-32, 11–19 (1984).
  8. M. Munowitz and D. J. Vezzetti, “Numerical modeling of coherent coupling and radiation fields in planar Y-branch interferometers,” J. Lightwave Technol. LT-10, 1570–1573 (1992).
  9. R. Baets and P. E. Lagasse, “Calculation of radiation loss in integrated-optic tapers and Y-junctions,” Appl. Opt. 21, 1972–1978 (1982).
  10. K. Tsutsumi, Y. Imada, H. Hirai, and Y. Yuba, “Analysis of single-mode optical Y-junctions by the bounded step and bend approximation,” J. Lightwave Technol. LT-6, 590–600 (1988).
  11. M. S. Stern, “Semi-vectorial polarized H field solutions for dielectric waveguides with arbitrary index profiles,” IEE Proc. Optoelectron. 135, 333–338 (1988).
  12. S. V. Burke, “Spectral index method applied to coupled rib waveguides,” Electron. Lett. 25, 605–606 (1989).
  13. W. P. Huang, C. L. Xu, and S. K. Chaundhuri, “A finite difference vector beam propagation method for three-dimensional waveguide structures,” IEEE Photon. Technol. Lett. 4, 148–151 (1992).
  14. C. J. Smartt, T. M. Benson, and P. C. Kendall, “Free-space radiation mode method for the analysis of propagation in optical waveguide devices,” IEE Proc. Optoelectron. 140, 56–61 (1993).
  15. F. Fernandez and Y. Lu, Microwave and Optical Waveguide Analysis by the Finite Element Method (Research Studies Press, Hertfordshire, UK, 1996).
  16. A. Vucovic, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel half-space radiation mode method for buried waveguide analysis,” Opt. Quantum Electron. 31, 43–51 (1999).
  17. D. N. Chien, M. Tanaka, and K. Tanaka, “Numerical simulation of an arbitrarily ended asymmetrical slab waveguide by guided-mode extracted integral equations,” J. Opt. Soc. Am. A 19, 1649–1657 (2002).
  18. I. G. Tigelis and A. B. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999).
  19. I. G. Tigelis and A. B. Manenkov, “Analysis of mode scattering from an abruptly ended dielectric slab waveguide by an accelerated iteration technique,” J. Opt. Soc. Am. A 17, 2249–2259 (2000).
  20. A. B. Manenkov, G. P. Latsas, and I. G. Tigelis, “Scattering of the transverse magnetic modes from an abruptly endedstrongly asymmetrical slab waveguide by an accelerated integral equation technique,” J. Opt. Soc. Am. A 18, 3110–3119 (2001).
  21. H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. QE-30, 2827–2835 (1994).
  22. Z. Weissman, A. Hardy, and E. Marom, “Mode-dependent radiation loss in Y-junctions and directional couplers,” IEEE J. Quantum Electron. QE-25, 1200–1208 (1989).
  23. S. Safavi-Naeini, Y. L. Chow, S. K. Chaudhuri, and A. Goss, “Wide angle phase-corrected Y-junction of dielectric waveguides for low-loss applications,” J. Lightwave Technol. LT-11, 567–575 (1993).
  24. D. Khalil, S. Tedjini, and P. Benech, “Asymmetric excitement of symmetric monomode Y-junction: the radiation mode effects of radiation modes in Mach–Zehnder electro-optic modulators,” IEEE Trans. Microwave Theory Tech. MTT-40, 2235–2242 (1992).
  25. I. F. Lealman, L. J. Rivers, M. J. Harlow, S. D. Perrin, and M. J. Robertson, “1.56-μm InGaAsP/InP tapered active layer multiquantum-well laser with improved coupling to cleaved singlemode fiber,” Electron. Lett. 30, 857–859 (1994).
  26. I. F. Lealman, C. P. Seltzer, L. J. Rivers, M. J. Harlow, and S. D. Perrin, “Low-threshold current 1.56-μm InGaAsP/InP tapered active layer multiquantum-well laser with improved coupling to cleaved singlemode fiber,” Electron. Lett. 30, 973–975 (1994).
  27. A. Vucovic, P. Sewell, T. M. Benson, and P. C. Kendall, “Spectral method applied to design spot size converters,” Electron. Lett. 33, 2121–2123 (1997).
  28. A. Vucovic, P. Sewell, T. M. Benson, and P. C. Kendall, “Facet reflectivity in the presence of a diffracting corner,” Electron. Lett. 31, 327–335 (1999).
  29. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991).
  30. A. B. Manenkov, “Eigenmodes expansion in lossy open waveguides (fibres),” Opt. Quantum Electron. 23 (5), 621–632 (1991).
  31. F. G. Tricomi, Integral Equations (Dover, New York, 1985).
  32. D. S. Jones, Theory of Electromagnetism (Macmillan, New York, 1964), Chap. 8.
  33. C. M. Angulo, “Diffraction of surface waves by a semi-infinite dielectric slab,” IRE Trans. Antennas Propag. 3, 100–109 (1957).
  34. L. Lewin, Theory of Waveguides (Newness-Butterworths, London, 1975), Chap. 9.
  35. A. B. Manenkov, “Propagation of a surface wave along a dielectric waveguide with an abrupt change of parameters. II: solution by variational method,” Radiophys. Quantum Electron. 25, 1050–1055 (1982).
  36. A. B. Manenkov, “Reflection of the surface mode from an abruptly ended W-fibre,” IEE Proc. J. Optoelectron. 139, 101–104 (1992).
  37. Y. P. Chiou and H. C. Chang, “Analysis of optical waveguide discontinuities using Pade approximants,” IEEE Photon. Technol. Lett. 9, 964–966 (1997).
  38. M. Abramowitz and I. Stegun, eds. Handbook of Mathematical Functions (Dover, New York, 1972), p. 887.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited